• 제목/요약/키워드: Linear Spring

검색결과 497건 처리시간 0.031초

하모닉 밸런스법을 이용한 비선형 진동절연 시스템의 근사적 응답 (Approximate Response of a Non-linear Vibration Isolation System Using the Harmonic Balance Method)

  • 이건명
    • 한국기계가공학회지
    • /
    • 제17권6호
    • /
    • pp.124-129
    • /
    • 2018
  • A non-linear vibration isolation system which is composed of a non-linear spring and a linear damper was proposed in past research. When the support of the isolation system is excited harmonically, the response component of the isolation system mass at the excitation frequency has been calculated approximately using the harmonic balance method. The response was approximated by a single mode, and the result was compared with a numerical result which is assumed as an accurate one. Next, the response was approximated by two modes, and the result was compared with the former one.

Estimation of viscous and Coulomb damping from free-vibration data by a least-squares curve-fitting analysis

  • Slemp, Wesley C.H.;Hallauer, William L. Jr.;Kapania, Rakesh K.
    • Smart Structures and Systems
    • /
    • 제4권3호
    • /
    • pp.279-290
    • /
    • 2008
  • The modeling and parameter estimation of a damped one-degree-of-freedom mass-spring system is examined. This paper presents a method for estimating the system parameters (damping coefficients and natural frequency) from measured free-vibration motion of a system that is modeled to include both subcritical viscous damping and kinetic Coulomb friction. The method applies a commercially available least-squares curve-fitting software function to fit the known solution of the equations of motion to the measured response. The method was tested through numerical simulation, and it was applied to experimental data collected from a laboratory mass-spring apparatus. The mass of this apparatus translates on linear bearings, which are the primary source of light inherent damping. Results indicate that the curve-fitting method is effective and accurate for both perfect and noisy measurements from a lightly damped mass-spring system.

스프링-보 모형을 이용한 해양구조물 원통부재의 충돌 해석 (Analysis of Offshore Tubulars Subjected to Collision Impacts Using a Spring-Beam Model)

  • 조상래;권종식
    • 한국해양공학회지
    • /
    • 제9권1호
    • /
    • pp.22-35
    • /
    • 1995
  • A simplified numerical procedure have proposed to trace the dynamic behaviour of offshore tubulars subjected to lateral collision impacts. The local denting and overall bending deformation of the struck tubular are represented by a non-linear spring and an elastic visco-plastic beam respectively. In this method a temporal finite difference method and a spacial finite element method are employed. Using this method various boundary conditions are able to considered and their effects on the extent of damage can be quantified. The extent of damage due to collision can be obtained as results of the dynamic analysis. The predictions using the proposed method have been correlated with existing test results and then the reliability of the procedure has been substantiated. The characteristics of the dynamic response of tubulars under lateral impacts are compared for simply supported roller and fixed end conditions and their effects on the extent of damage are specfied.

  • PDF

철도차량용 방진고무부품 특성예측 및 평가 (Characteristic Prediction and Evaluation of Rubber Components for Railway Vehicle)

  • 우창수;박동철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.83-89
    • /
    • 2005
  • Rubber spring is used in primary suspension system for railway vehicle. This rubber spring has function which reduce vibration and noise, support the load carried in operation of rail vehicle. The non-linear properties of rubber which are described as strain energy function are important parameter to design and evaluate of rubber components. These are determined by material tests which are tension, compression and shear test. The behaviors of load-displacement of rubber spring for rail vehicle are evaluated by using commercial FEA code. It is shown that the results by FEA simulations are in close agreement with the test results

  • PDF

캠 형상 최적설계를 위한 밸브 트레인 동특성 해석 모델 (A simulation model of valve train dynamics for cam profile optimizations)

  • 김도중
    • 오토저널
    • /
    • 제15권2호
    • /
    • pp.53-63
    • /
    • 1993
  • A numerical modeling technique is proposed for computer simulations of high speed valve train dynamic terms in the valve spring reaction forces are calculated using linear vibration theory for given kinematic valve motions. Because the spring dynamics are analyzed before the time stepping integration, spring surge phenomena can be included without using additional computer time. In addition to that, steady state response of the valve dynamics can be obtained by just one cycle simulation. Consequently, valve train dynamics can be simulated very quickly without noticeable errors in accuracy. The experimental result prove the computer model developed here is accurate and also computationally efficient. The model is especially useful for cam profile optimizations.

  • PDF

The dispersion of the flexural waves in a compound hollow cylinder under imperfect contact between layers

  • Ipek, Cengiz
    • Structural Engineering and Mechanics
    • /
    • 제55권2호
    • /
    • pp.335-348
    • /
    • 2015
  • The influence of the interface imperfect bonding on the flexural wave dispersion in the bilayered hollow circular cylinder is studied with utilizing three-dimensional linear theory of elastodynamics. The shear-spring type model is used for describing the imperfect bonding on the interface between the layers and the degree of the imperfectness is estimated through the dimensionless shear-spring parameters which enter the mentioned model. The method for finding the analytical expressions for the sought values and dispersion equation are discussed and detailed. Numerical results on the lowest first and second modes are presented and analyzed. These results are obtained for various values of the shear-spring parameters. According to these results, in particular, it is established that as a results of the imperfection of the bonding between the layers the new branches of the dispersion related the first fundamental mode arise and the character of the dispersion curve related to the second mode becomes more complicated.

고정-스프링 일정체적 기둥의 자유진동 및 좌굴하중 (Free Vibrations and Buckling Loads of Column with Clamped-Spring Ends and Constant Volume)

  • 윤희민;이태은;박광규;이병구
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.117-120
    • /
    • 2007
  • This study deals with the free vibrations and buckling loads of column with clamped-spring ends and constant volume. The column has the regular polygon cross-section whose depth is varied with the linear functional fashion. The differential equation governing the free vibration of such column is derived in which the effect of axial load is included. The differential equation is solved numerically for calculating frequencies. By using the relationship between loads and frequencies, the buckling loads are also obtained.

  • PDF

전동차용 방진고무스프링 특성평가 및 사용수명 예측 (Characteristics Evaluation and Useful Life Prediction of Rubber Spring for Railway Vehicle)

  • 우창수;박동철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.104-111
    • /
    • 2006
  • The non-linear properties of rubber material which are described as strain energy function are important parameter to design and evaluate of rubber spring. These are determined by material tests which are uni-axial tension and bi-axial tension. The computer simulation using the nonlinear element analysis program executed to predict and evaluate the load capacity and stiffness for chevron spring. In order to investigate the heat-aging effects on the rubber material properties, the acceleration test were carried out. Compression set results changes as the threshold are used for assessment of the useful life and time to threshold value were plotted against reciprocal of absolute temperature to give the Arrhenius plot. By using the compression set test, several useful life prediction for rubber material were proposed.

  • PDF

클린 튜브 시스템 이송 유닛의 웨이퍼 운동 역학 모델링 (Wafer Motion Modeling of Transfer Unit in Clean Tube System)

  • 신동헌;정규식;윤정용
    • 한국정밀공학회지
    • /
    • 제21권3호
    • /
    • pp.66-73
    • /
    • 2004
  • This paper presents wafer motion modeling of transfer unit in clean tube system, which was developed as a means for transferring the air-floated wafers inside the closed tube filled with the super clean airs. When the wafer is transferred in x direction with an initial velocity the motion along x direction can be modeled as a simple decaying motion due to viscous friction of the fluid. But, the motion in y direction is modeled as a mass-spring-damper system where the recovering force by air jets issued from the perforated is modeled as a linear spring. Experiments with a clean tube system built fur 12 wafer show the validity of the presented force and motion models.