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1. Introduction

The vibration isolation system is used to minimize

the motions transmitted to the upper part of a

system when the base or support of the system

moves[1]. The suspension system of car seats is an

example of a vibration isolation system
[2,3]

.

The author’s previous study proposed a vibration

isolation system with nonlinear springs and

investigated its characteristics
[4]
. The proposed

nonlinear springs are composed of two symmetrical

linear springs. These nonlinear springs are

characterized by a much simpler structure compared

with other nonlinear springs with different structures,

such as disc springs[5], and by the easy adjustability

of the spring’s load capacity. The vibration isolation

system was constructed using these nonlinear springs

and a linear damper. Fig. 1 shows this vibration

isolation system. If the nonlinear relationship
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between the spring force and displacement can be

expressed as a polynomial, the response of this

nonlinear vibration isolation system can be

approximated. The approximation methods for the

solutions of the nonlinear equation of motion

include the Harmonic Balance Method[6,7] and

methods using a higher-order frequency response

function[8,9]. In this study, the response component

of the system mass at the excitation frequency was

measured while the base of the vibration isolation

system was moving harmonically and compared with

the numerical analysis result.

2. Target System

2.1 Target System

The nonlinear vibration isolation system in Fig. 1

consists of a mass, two linear springs, and a linear

damper. This system has a mass of    kg, a

linear spring constant of    N/m, a

damping coefficient of    Ns/m, an original

spring length of    m, and an initial spring

angle with the horizontal line    rad

().

The equation of motion of the mass when the

base of the vibration isolation system receives

excitation is as follows:

 (1)

where  is a function of the spring force, which

can be found in the reference[4]. The base

displacement is given by   sin, and the

displacement,  , of the mass is measured from

the equilibrium state.      , Eq. (1) becomes

the following:

  sin (2)

The response of the mass can be determined by

numerically solving this equation for  and adding

 to it. The built-in function ‘ode45’ of MATLAB

was used to solve the equation. The response

component in multiple frequencies can be found by

taking the fft of  . The response component at

the excitation frequency of    rad/s, and the

amplitude of the base displacement,    m

are shown in Fig. 2. This figure shows that the

component at  rad/s, which is the excitation

frequency of the system, and the component at 

rad/s, which is its harmonic term, are dominant. The

component amplitude at the excitation frequency is

0.049328 m.

3. Application of the Analysis Method

The Harmonic Balance Method is widely used to

approximate the stable or unstable periodic responses

of a nonlinear vibration system. In this method, the

steady state response of the nonlinear system that

receives a harmonic input is represented by the sum

of harmonic terms. In a simple case, the response is

expressed as follows:

  cos (3)

The amplitude of the harmonic term can be

determined by substituting the above equation in

the nonlinear equation and equating coefficients of

the harmonic terms on both sides.

Fig. 1 Proposed vibration isolation system
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Fig. 2 Frequency components of the response

Fig. 3 Comparison of the original spring force and

the regression analysis result

Fig. 4 Comparison of the original spring force

(solid line) and the regression analysis

result (dash-dot line)

3.1 Using One Mode

In Eq. (2),   represents the nonlinear spring

force. After placing the origin of the coordinate axis

at a position of static equilibrium, the spring force

around this position can be approximated by the

third-order polynomial,    
 

.

The values of the coefficients can be determined in

the range of  ≤  ≤  using regression

analysis as follows:

   Nm,   Nm,

  Nm.

Fig. 3 shows both the original spring force and the

regression analysis result; these two curves are

almost identical and cannot be distinguished. Using

this result, Eq. (2) can be written as follows:

 
 



 sin

(4)

In the above equation, an unknown phase angle, 

was used in the excitation force so that one may

obtain a fundamental harmonic response containing a

single trigonometric term. Assuming   sin,

the above equation can be expressed as follows:

sincossin


sin

sin

 sin

(5)

If the trigonometric function relation is used, the

above equation becomes

sincossin





 


 






 


  sincoscossin

(6)

To simplify the above equation,  is

represented by . If the coefficients of the sin
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and cos terms on both sides are equated, we

obtain the following equation:

  




  cos (7)

  sin (8)

If we solve the above equations simultaneously,

   m and    rad. Because

  sin is the response to the excitation

force, sin, the response to the

excitation force,  sin will be

  sin. If  is determined by

adding   sin to  , the amplitude of the

response component at the excitation frequency

becomes  m, which has an error of 1.45%

when compared with the numerically calculated

value, 0.049328 m.

In Eq. (6), the constant term, 




 on the left

side and the equal sign are not valid. This constant

term was generated in the square term of  .

Therefore, to prevent the occurrence of the constant

term, the square term was removed from the

regression analysis of the spring force as follows:

     
 (9)

As a result, we obtained    Nm,

   Nm . The spring force represented

by this equation is compared with the original

spring force in Fig. 4. It can be seen that the

original spring force is not represented properly

when regression analysis was performed with the

square term removed. When Eq. (9) was used in

Eq. (2), which is the equation of motion, and the

Harmonic Balance Method was applied as above,

the response component amplitude at the excitation

frequency became  m; thus, the error with

the numerically calculated value increased to 9.08%.

Therefore, it can be seen that not using the square

term in the regression analysis of the spring force

to remove the constant term is not a good method.

3.2 Using Two Modes

Two modes were used in the Harmonic Balance

Method to improve the accuracy of the solution. In

other words, as an approximate solution of Eq. (4),

the following equation was used:

  sinsincos (10)

After substituting  in Eq. (4) and rearranging

the equation, if the coefficients of the sin ,

cos , sin, and cos terms on both

sides are equated, we obtain the following

equations:

   






 




 




  cos

(11)

   sin (12)

  






 




  




  

(13)

    











 




  




  

(14)

It is not easy to solve the above equations

through a nonlinear equation for the unknown

variables    . This equation was solved as

follows. If Eqs. (11) and (12) are combined by 

and both sides are squared, we obtain the following

two equations, where   .
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
    







 




   cos

(15)


   sin (16)

If the above two equations are added, the variable

 is removed and can be expressed as follows:

 


(17)

where

      







 




 

(18)

Eq. (13) can be combined by  and expressed for

 as follows:

 
   










(19)

Similarly, Eq. (14) can be expressed for  as

follows:





  

















(20)

In this way, we obtained three equations, (17), (19),

and (20) for   respectively. To solve these

equations numerically and simultaneously, new

   were obtained by substituting the initial

values of the unknown variables,   , in Eqs.

(17), (19), and (20), respectively. Then, the unknown

values were determined by substituting these values

in the equations, and this process was repeated. For

the initial value of  , 0.04474 was used, which is

Fig. 5 Variation of a calculated coefficient with

the number of iterations

the  value when there is only one mode. The

initial values of  and were set to zero. The

above calculation process was repeated 100 times.

After 10 iterations, the unknown values converged

with almost no change. The converged values were

  ,   , and    .

Fig. 5 shows the variation of the unknown value

 during the repeated calculations, and the

unknown values changed very little after 10

iterations.

When the displacement of the mass  was

determined by adding   sin to  , the

response component amplitude at the excitation

frequency became 0.05008 m. When this was

compared with the numerically calculated value,

0.04933 m, the error became 1.52%, which had

increased compared with using one mode. This

appears to be because, as with the case of using

one mode in the approximate equation, the equals

sign in the equation of motion was not valid

because a constant term that could not be offset

appeared in the equation of motion due to the

square term used in the regression analysis of the

spring force.

4. Conclusion

This study approximately analyzed the response of

a nonlinear vibration isolation system composed of a
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nonlinear spring and a linear damper. The

displacement of a mass was approximated using the

Harmonic Balance Method, while the base of the

vibration isolation system moved harmonically. For

this purpose, the nonlinear spring force was

represented as a third-order polynomial using

regression analysis. The response component at the

excitation frequency when the response of mass was

represented in one mode was approximated and

compared with the numerical calculation result.

When the response was approximated using two

modes to improve the accuracy of analysis, the

accuracy did not increase, unlike the expectation.

This appears to be because the second-order term of

the spring force in the equation of motion became

a constant term, and because this constant term was

not offset, the equals sign of the equation of

motion became invalid.
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