• Title/Summary/Keyword: Linear Predictive Coding

Search Result 71, Processing Time 0.034 seconds

A Practical Implementation of the LTJ Adaptive Filter and Its Application to the Adaptive Echo Canceller (LTJ 적응필터의 실용적 구현과 적응반향제거기에 대한 적용)

  • Yoo, Jae-Ha
    • Speech Sciences
    • /
    • v.11 no.2
    • /
    • pp.227-235
    • /
    • 2004
  • In this paper, we proposed a new practical implementation method of the lattice transversal joint (LTJ) adaptive filter using speech codec's information. And it was applied to the adaptive echo cancellation problem to verify the efficiency of the proposed method. Realtime implementation of the LTJ adaptive filter is very difficult due to high computational complexity for the filter coefficients compensation. However, in case of using speech codec, complexity can be reduced since linear predictive coding (LPC) coefficients are updated each frame or sub-frame instead of every sample. Furthermore, LPC coefficients can be acquired from speech decoder and transformed to the reflection coefficients. Therefore, the computational complexity for updates of the reflection coefficients can be reduced. The effectiveness of the proposed LTJ adaptive filter was verified by the experiments about convergence and tracking performance of the adaptive echo canceller.

  • PDF

Introduction to the Spectrum and Spectrogram (스팩트럼과 스팩트로그램의 이해)

  • Jin, Sung-Min
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.19 no.2
    • /
    • pp.101-106
    • /
    • 2008
  • The speech signal has been put into a form suitable for storage and analysis by computer, several different operation can be performed. Filtering, sampling and quantization are the basic operation in digiting a speech signal. The waveform can be displayed, measured and even edited, and spectra can be computed using methods such as the Fast Fourier Transform (FFT), Linear predictive Coding (LPC), Cepstrum and filtering. The digitized signal also can be used to generate spectrograms. The spectrograph provide major advantages to the study of speech. So, author introduces the basic techniques for the acoustic recording, digital signal processing and the principles of spectrum and spectrogram.

  • PDF

A Study on the Phonemic Segmentation of an Initial Affricate (초성파찰음의 음소분류에 관한 연구)

  • Kim, Ki-Woon;Lee, Ki-Young;Bae, Chul-Soo;Choi, Kap-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.33-36
    • /
    • 1988
  • In this paper, the starting point of affricate is detected from the first predictor coefficient of a 12-pole linear predictive coding (LPC) analysis and phonemic segmentation is done through measuring short time energy and zero crossing rate. By this segmentation method, the duration of an aspirate can be mearsured in order to detect an aspirate or not.

  • PDF

Speech Recognition of Multi-Syllable Words Using Soft Computing Techniques (소프트컴퓨팅 기법을 이용한 다음절 단어의 음성인식)

  • Lee, Jong-Soo;Yoon, Ji-Won
    • Transactions of the Society of Information Storage Systems
    • /
    • v.6 no.1
    • /
    • pp.18-24
    • /
    • 2010
  • The performance of the speech recognition mainly depends on uncertain factors such as speaker's conditions and environmental effects. The present study deals with the speech recognition of a number of multi-syllable isolated Korean words using soft computing techniques such as back-propagation neural network, fuzzy inference system, and fuzzy neural network. Feature patterns for the speech recognition are analyzed with 12th order thirty frames that are normalized by the linear predictive coding and Cepstrums. Using four models of speech recognizer, actual experiments for both single-speakers and multiple-speakers are conducted. Through this study, the recognizers of combined fuzzy logic and back-propagation neural network and fuzzy neural network show the better performance in identifying the speech recognition.

Statistical Error Compensation Techniques for Spectral Quantization

  • Choi, Seung-Ho;Kim, Hong-Kook
    • Speech Sciences
    • /
    • v.11 no.4
    • /
    • pp.17-28
    • /
    • 2004
  • In this paper, we propose a statistical approach to improve the performance of spectral quantization of speech coders. The proposed techniques compensate for the distortion in a decoded line spectrum pairs (LSP) vector based on a statistical mapping function between a decoded LSP vector and its corresponding original LSP vector. We first develop two codebook-based probabilistic matching (CBPM) methods based on linear mapping functions according to different assumption of distribution of LSP vectors. In addition, we propose an iterative procedure for the two CBPMs. We apply the proposed techniques to a predictive vector quantizer used for the IS-641 speech coder. The experimental results show that the proposed techniques reduce average spectral distortion by around 0.064dB.

  • PDF

The Seismic Multipulse Deconvolution (다중펄스 방법을 이용한 디컨벌루션)

  • Shon, Howoong
    • Economic and Environmental Geology
    • /
    • v.28 no.5
    • /
    • pp.487-491
    • /
    • 1995
  • The multipulse model of linear predictive coding (LPC), which has been successfully used for compressing of speech signals into an impulse excitation, is here applied to seismic data which contains multiples. Multiples are happened by successive reflection between layers and make the seismic interpretation difficult In this paper, the author applied the enhanced multipulse method to seismic traces to compress source-wavelets into spikes, and to eliminate/reduce multiples. The enhanced multipulse method which was applied to seismic traces extracted the amplitudes and locations of reflectivity function, which depicts the subsurface configuration, by iterative computation of autoregressive (AR) estimation method.

  • PDF

Vocal Tract Area Estimation from Deaf and Normal Children's Speech (청각장애아 및 건청아 음성으로부터 성도 면적 추정)

  • Kim, Se-Hwan;Kwon, Oh-Wook
    • Proceedings of the KSPS conference
    • /
    • 2005.11a
    • /
    • pp.51-54
    • /
    • 2005
  • This paper analyzes the vocal tract area estimation algorithm used as a part of a speech analysis program to help deaf children correct their pronunciations by comparing their vocal tract shape with normal children's. Assuming that a vocal tract is a concatenation of cylinder tubes with a different cross section, we compute the relative vocal tract area of each tube using the reflection coefficients obtained from linear predictive coding. Then, obtain the absolute vocal tract area by computing the height of lip opening with a formula modified for children's speech. Using the speech data for five Korean vowels (/a/, /e/, /i/, /o/, and /u/), we investigate the effects of the sampling frequency, frame size, and model order. We compare vocal tract shapes obtained from deaf and normal children's speech.

  • PDF

Real-time implementation and performance evaluation of speech classifiers in speech analysis-synthesis

  • Kumar, Sandeep
    • ETRI Journal
    • /
    • v.43 no.1
    • /
    • pp.82-94
    • /
    • 2021
  • In this work, six voiced/unvoiced speech classifiers based on the autocorrelation function (ACF), average magnitude difference function (AMDF), cepstrum, weighted ACF (WACF), zero crossing rate and energy of the signal (ZCR-E), and neural networks (NNs) have been simulated and implemented in real time using the TMS320C6713 DSP starter kit. These speech classifiers have been integrated into a linear-predictive-coding-based speech analysis-synthesis system and their performance has been compared in terms of the percentage of the voiced/unvoiced classification accuracy, speech quality, and computation time. The results of the percentage of the voiced/unvoiced classification accuracy and speech quality show that the NN-based speech classifier performs better than the ACF-, AMDF-, cepstrum-, WACF- and ZCR-E-based speech classifiers for both clean and noisy environments. The computation time results show that the AMDF-based speech classifier is computationally simple, and thus its computation time is less than that of other speech classifiers, while that of the NN-based speech classifier is greater compared with other classifiers.

A Study on A Multi-Pulse Linear Predictive Filtering And Likelihood Ratio Test with Adaptive Threshold (멀티 펄스에 의한 선형 예측 필터링과 적응 임계값을 갖는 LRT의 연구)

  • Lee, Ki-Yong;Lee, Joo-Hun;Song, Iick-Ho;Ann, Sou-Guil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.20-29
    • /
    • 1991
  • A fundamental assumption in conventional linear predictive coding (LPC) analysis procedure is that the input to an all-pole vocal tract filter is white process. In the case of periodic inputs, however, a pitch bias error is introduced into the conventional LP coefficient. Multi-pulse (MP) LP analysis can reduce this bias, provided that an estimate of the excitation is available. Since the prediction error of conventional LP analysis can be modeled as the sum of an MP excitation sequence and a random noise sequence, we can view extracting MP sequences from the prediction error as a classical detection and estimation problem. In this paper, we propose an algorithm in which the locations and amplitudes of the MP sequences are first obtained by applying a likelihood ratio test (LRT) to the prediction error, and LP coefficients free of pitch bias are then obtained from the MP sequences. To verify the performance enhancement, we iterate the above procedure with adaptive threshold at each step.

  • PDF

A Study on the Frequency Scaling Methods Using LSP Parameters Distribution Characteristics (LSP 파라미터 분포특성을 이용한 주파수대역 조절법에 관한 연구)

  • 민소연;배명진
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.304-309
    • /
    • 2002
  • We propose the computation reduction method of real root method that is mainly used in the CELP (Code Excited Linear Prediction) vocoder. The real root method is that if polynomial equations have the real roots, we are able to find those and transform them into LSP. However, this method takes much time to compute, because the root searching is processed sequentially in frequency region. In this paper, to reduce the computation time of real root, we compare the real root method with two methods. In first method, we use the mal scale of searching frequency region that is linear below 1 kHz and logarithmic above. In second method, The searching frequency region and searching interval are ordered by each coefficient's distribution. In order to compare real root method with proposed methods, we measured the following two. First, we compared the position of transformed LSP (Line Spectrum Pairs) parameters in the proposed methods with these of real root method. Second, we measured how long computation time is reduced. The experimental results of both methods that the searching time was reduced by about 47% in average without the change of LSP parameters.