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1  |   INTRODUCTION

The human speech signal can be broadly classified into 
two categories: voiced speech and unvoiced speech. Voiced 
speech is produced as a result of the excitation generated by 
a periodic vibration of the vocal cords and can be seen as 
a quasi-periodic signal in the time domain representation. 
On the other hand, the unvoiced speech, which is non-pe-
riodic, consists of random signal-like excitations. A human 
speech signal also consists of a silence region, in which the 
signal energy is negligible, and no excitation is supplied to 
the vocal tract. Therefore, the silence region is assumed to 
be a subset of the unvoiced speech. Errors in speech analysis 

predominantly occur due to a voiced part getting wrongly 
classified as an unvoiced part or vice-versa. Hence, an ac-
curate classification of a speech signal into the voiced and 
unvoiced speech frames plays an important role in the field 
of speech processing and its applications in mobile commu-
nication such as speech coding, speech analysis-synthesis, 
and speech recognition. It is used as a pre-processing step in 
many speech applications and is an important step for pitch 
detection in any speech analysis-synthesis system.

Accurately classified voiced and unvoiced speech seg-
ments can significantly improve the performance of any pitch 
detector [1,2] which, in turn, results in an improved quality of 
the synthesized speech signal in a communication system [3].
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Several methods of speech classification such as the au-
tocorrelation function (ACF), short-time energy of the sig-
nal (E), average magnitude difference function (AMDF), 
zero crossing rate (ZCR), cepstrum, discrete wavelet trans-
form (DWT), and so on, that make use of acoustic features, 
have been reported in the literature [1,4–8]. A hybrid ap-
proach of speech classification such as the hidden Markov 
models, Gaussian mixture model or neural network (NN) 
model, that uses more than one feature, has been also re-
ported [9-21].

In the study by Ahmadi and Spanisa [1], a multifeature 
voiced/unvoiced classification method based on cepstrum, 
ZCR and short-time energy was presented. It was found that 
the method is robust to noise. A simple and efficient voiced/
unvoiced classification method based on the combination of 
ZCR and energy (ZCR-E) was presented by Bachu and others 
[5]. Their method was able to provide good results for speech 
classification. An improved pitch detection and voiced/un-
voiced speech classification method based on the wavelet 
transform was presented by Janer and others [6]. A significant 
improvement in the pitch error and error rate of the voiced/
unvoiced parts was observed with this method. In the investi-
gation by Atal and others [9], a pattern recognition approach 
for speech classification was presented which provided satis-
factory results. However, their algorithm required training on 
a specific dataset. Two novel hybrid methods of speech clas-
sification were presented by Shah and others [10]. The first 
method was based on the Mel-frequency cepstral coefficient 
(MFCC) with a Gaussian mixture model, while the second 
method was based on the linear predictive coding (LPC) co-
efficient with a reduced dimensional LPC residual and the 
Gaussian mixture model. Both the methods were able to give 
approximately 90% identification accuracy or more. Qi and 
Hunt [11] presented a speech classifier based on a multilayer 
feedforward network. Using this method, the rms energy and 
ZCR were extracted and an accuracy of 96% was achieved. 
Hassan and others [8] proposed a voiced/unvoiced classifi-
cation algorithm of noisy speech by extracting the short-time 
energy and short-time zero crossing rate. The speech signal 
in the spectrogram image, in which the signal was divided 
into sub bands, was processed frame by frame and the en-
ergy ratio was calculated. A decision on the classification of 
the signals was taken based on their pattern using an energy 
ratio pattern matching lookup table. Drugman and others [12] 
considered voicing detection as a classification problem and 
pitch contour detection as a regression problem. For voicing 
detection, they extracted the acoustic features from three do-
mains (time, frequency, and cepstrum). Using the k-means 
clustering algorithm and the multilayer perceptron class of 
the artificial neural networks, they reduced the voice deduc-
tion errors by 20% and 45%, respectively, compared with the 
other state-of-the-art techniques. Bagavathi and Padma [13] 
presented a fuzzy c-implies clustering method for classifying 

voiced and unvoiced activity using MFCC as features and 
achieved 91.5% classification accuracy. Bendiksen and 
Steiglitz [14] used an NN as a classifier for voiced/unvoiced 
speech classification. They extracted six features, namely, the 
rms energy of signal, the rms energy of the pre-emphasized 
signal, the normalized autocorrelation coefficient of the sig-
nal at unit sample delay, the normalized autocorrelation co-
efficient of the pre-emphasized signal at unit sample delay, 
the ratio of the signal energy above 4000  Hz to the signal 
energy below 2000 Hz, and the product of the signal energy 
above 4000  Hz to the signal energy below 2000  Hz. They 
achieved an error rate of 0.4%. Juang and Rabiner [15] dis-
cussed about the spectrum representation of speech from the 
computational (analytical) as well as perceptual viewpoints. 
This speech representation, in terms of the spectrum, is im-
portant if given as an input to the classifier to obtain high 
accuracy. An automatic speech segmentation using a neural 
tree network was presented by Sharma and Mammone [16] 
for the cases in which the number of sub-word acoustic units 
is either known or unknown a priori. This classifier gave 
an accuracy of 66.6%. A voiced/unvoiced speech classifier 
based on the adaptive filtering of the decomposed empirical 
modes was proposed by Khaldi and others [17]. They used 
features such as empirical mode decomposition and local sta-
tistics of speech and these features were filtered by adaptive 
center weighted average. It was observed that this proposed 
classifier gives superior results in terms of the average seg-
mental signal-to-noise ratio (ASSNR) and perceptual eval-
uation of speech quality (PESQ), compared with the other 
methods considered. A noise robust voice activity detection 
system based on an unsupervised method was proposed by 
Ali and Talha [18], in which the long-term features were 
computed using the Katz algorithm of fractal dimension. The 
signal-to-noise ratio (SNR) was calculated at different levels 
in the presence of various noise sources such as white noise, 
cars, and babbling. It was observed that the method is reliable 
in labeling the voiced and unvoiced parts in both clean and 
noisy environments. In the report by Sun and others [19], a 
complexity analysis for the voiced/unvoiced speech classifi-
cation based on the feature of the entropy of phonemes was 
described. On testing the different single phoneme signals, 
significant differences were observed in the sample entropy 
of the voice/unvoiced speech. Hence, it was concluded that 
the voiced/unvoiced decision can be made based on the mea-
sure of their complexity. Struwe [20] presented a voiced/
unvoiced speech classification method using LPC as fea-
ture and a neural network as a classifier and reported that 
the proposed method works better in comparison to the other 
methods. In the study by Park and others [21], an algorithm 
for automatic speech segmentation in a concatenative text-to-
speech synthesis was presented. They proposed the reliable 
segmentation boundaries of the speech data by applying a 
number of automatic segmentation machines simultaneously. 
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A significant improvement in the segmentation accuracy was 
thus observed.

Usually a threshold value for some acoustic features is 
used for voiced/unvoiced classification of a speech signal. 
In such methods, the classification performance generally 
depends on the choice of the acoustic features and an effec-
tive threshold. Owing to its low computational complexity, 
the time-domain acoustic features are generally used in re-
al-time implementation. However, in the case of the statisti-
cal methods, training data having different levels of noise are 
required. Owing to its multiple features, the hybrid approach 
offers a significantly accurate voiced/unvoiced classification 
of speech signals at the cost of computational complexity.

Many speech classification methods have been reported in 
the literature and their reliability has been tested in terms of 
their classification accuracy. However, for practical/real-time 
applications of speech communication, the choice of an ap-
propriate classifier is important for a reliable performance 
of the system, where, apart from the classification accuracy, 
some other parameters must be investigated for a proper se-
lection. Therefore, some important parameters such as the 
speech quality and computational complexity of the complete 
communication system with different classifiers must be con-
sidered for the selection of the speech classifier.

Thus, considering the above-mentioned points, the key 
contribution of this work is the investigation on the per-
formance of six voiced/unvoiced classification schemes on 
the basis of their comparison carried out in an LPC-based 
speech analysis-synthesis system [22,23]. Since a majority of 
the classification errors occur while classifying the voiced 
and unvoiced parts, this work focuses on the classification 
of the voiced/unvoiced parts in the speech only, leaving the 
silence part untouched. To achieve this goal, complete sys-
tems using six voiced/unvoiced classifiers have been simu-
lated and implemented in real time using the TMS320C6713 
DSP starter kit in the MATLAB environment. LPC is a sim-
ple and commonly used speech analysis-synthesis technique 
for producing good quality speech signals at low bit rates. 
It is the base of many speech coding techniques, including 
the code-excited linear prediction algorithm, that follows the 
ITU-T G.729 standard [24]. Therefore, an LPC-based speech 
analysis-synthesis system has been considered in this work 
in order to evaluate the performance of the speech classi-
fiers. The classifiers chosen for the comparison, which are 
generally used in real-time applications, are based on: ACF, 
AMDF, weighted ACF (WACF), ZCR-E, cepstrum, and NN 
[4–7,10]. Although the performance of different speech clas-
sifiers has been compared earlier in terms of the percentage of 
their classification accuracy [4], their performance compari-
son after they are integrated into a complete communication 
system has been rarely found in the literature. In addition, a 
comparison of the different classifiers implemented in real 
time has not been reported thus far. Since speech quality and 

computational complexity are the two major parameters in 
any practical communication system, the performance of the 
speech classifiers investigated in this work has been com-
pared in terms of the speech quality through the mean opin-
ion score (MOS) and the PESQ test and the computational 
complexity through their simulation time and execution time 
(for real-time implementation), in addition to the percentage 
of their classification accuracy.

The remainder of the paper has been organized as follows: 
The details of the six voiced/unvoiced classifiers have been 
discussed in Section 2. The implementation of the analy-
sis-synthesis system using the different classifiers has been 
presented in Section 3. Results of the performance compar-
ison have been presented in Section 4 and the conclusions 
from this work are given in Section 5.

2  |   VOICED/ UNVOICED SPEECH 
CLASSIFIERS

In this section, the steps involved in developing the six 
voiced/unvoiced classifiers (three single featured and three 
multi-featured speech classifier) have been presented [1,4–
7,10]. The first three single featured speech classifiers are 
based on ACF, AMDF and cepstrum. The fourth and fifth 
classifiers, that use two features, are based on WACF (which 
is a combination of ACF and AMDF) and ZCR-E (which is 
a combination of the ZCR and short-time energy), respec-
tively. The sixth classifier is based on an NN, which uses 
some acoustic features. To analyze the speech classifiers, two 
speech databases (PTDB-TUG and NOIZEUS) [25,26] have 
been used. A sampling frequency of 8 kHz was used for the 
analysis. The speech signals were framed in 20 ms chunks 
(that is, 160 samples) for the analysis using the different clas-
sifiers. A subset of these datasets was used to train the NN-
based speech classifier. The details of the speech classifiers 
investigated in this work are described in the sub-sections 
below:

2.1  |  ACF-based speech classifier

The ACF of a speech frame, x(n), can be defined as:

where N is the total number of samples in a speech frame and k 
is the lag number. The ACF of a speech signal consists of large 
amplitude peaks corresponding to the voiced speech frames and 
small amplitude peaks corresponding to the unvoiced speech 
frames. The decision on the voiced/unvoiced part is made by 
comparing the peak values with respect to a constant threshold. 

(1)F1 (k)=
1

N

N−k−1∑

n=0

x (n) x (n+k)
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The steps involved in the speech classification using this classi-
fier are as follows:

(i)	 Take the speech signal to be analyzed.
(ii)	 Take the first frame of the speech signal.
(iii)	Compute the ACF values for the speech frame using (1).
(iv)	Obtain the highest peak value, TP1, from the ACF values.
(v)	 Compare TP1 with a constant threshold value, THR1. If 

TP1 > THR1, then the speech frame is classified as a voiced 
frame, else it is classified as an unvoiced frame.

(vi)	Repeat steps (i) to (v) for all speech frames.

2.2  |  AMDF-based speech classifier

The AMDF of a speech frame, x(n), can be defined as:

where N is the total number of samples in a speech frame and 
k is the lag number. AMDF consists of several local minimum 
amplitude peaks in a voiced speech frame. These amplitude val-
ues are used to make the decision on a voiced/unvoiced frame. 
The following are the steps involved in using the AMDF-based 
classifier for speech classification:

(i)	 Take the speech signal to be analyzed.
(ii)	 Take the first frame of the speech signal.
(iii)	Compute the AMDF values for the speech frame using 

(2).
(iv)	Obtain the global minimum value, Tmin, from the AMDF 

values.
(v)	 Compare Tmin with a constant threshold value, THR2. 

If Tmin ≤ THR2 than the speech frame is classified as a 
voiced frame, else it is classified as an unvoiced frame.

(vi)	Repeat steps (i) to (v) for all speech frames.

2.3  |  Cepstrum-based speech classifier

The cepstrum is defined as the inverse discrete Fourier trans-
form of the log magnitude of the discrete Fourier transform 
of a signal. The cepstrum of a speech frame, x(n), can be 
obtained using the following equation:

The cepstrum of the unvoiced speech contains smaller 
magnitude cepstral peaks as compared to those for the voiced 
speech. Therefore, the speech can be classified by identifying 

the magnitude of the cepstral peak. The steps involved in 
using the cepstrum-based classifier for speech classification 
are as follows:

(i)	 Take the signal to be analyzed.
(ii)	 Take the first frame of the speech signal.
(iii)	Compute the cepstrum for the speech frame.
(iv)	Compute the threshold value, CT.
(v)	 Compare the magnitude of the cepstral peaks, Ci, (where i is 

the number of cepstral peaks in a frame) for the speech frame. 
If Ci > CT, then the speech frame is classified as a voiced 
frame, else it is classified as an unvoiced speech frame.

(vi)	Repeat steps (i) to (v) for all speech frames.

The threshold value, CT, chosen was the median value of 
the magnitude of the cepstral peaks. This threshold was cal-
culated and updated for every utterance in the speech signal.

2.4  |  WACF-based speech classifier

This classifier is based on the combination of features of both 
ACF and AMDF. The WACF is defined as.

where F1(k) is ACF (defined by (1)), and F2(k) is AMDF (de-
fined by (2)) of speech frame x(n). k is the lag number and α is a 
fixed number (α < 0) used for avoiding the condition of F2(k) = 
0 at k = 0. The steps involved in using this classifier for speech 
classification are as follows:

(i)	 Take the speech signal to be analyzed.
(ii)	 Take the first frame of the speech signal.
(iii)	Compute the WACF values for the speech frame using (4).
(iv)	Obtain the highest peak value, TP2, from the WACF values.
(v)	 Compare TP2with a constant threshold value, THR3. If 

TP2 > THR3, then the speech frame is classified as a voiced 
frame, else it is classified as an unvoiced frame.

(vi)	Repeat steps (i) to (v) for all speech frames.

2.5  |  ZCR-E-based speech classifier

The ZCR for a speech frame x(n) can be obtained using the 
following equation:

The average energy of a speech frame, x(n), can be ob-
tained by:

(2)F2 (k)=
1

N

N−k−1∑

n=0

|x (n)−x (n+k)|

(3)C (n)=

N−1∑

n=0

log

(||||||

N−1∑

n=0

x (n) e
−j

2�kn

N

||||||

)
e

j
2�kn

N .

(4)F3 (k)=
F1 (k)(

F2 (k)+�

)
,

(5)FZCR =
1

2

N∑

n=1

|sgn (x (n))−sgn (x (n−1))|.
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Here, N is the total number of samples in the speech frame. 
The ZCR has the property that the speech frame is likely to 
be unvoiced if ZCR exceeds a given threshold. Otherwise, 
the frame is likely to be a voiced speech frame. On the other 
hand, the energy for a voiced speech frame is quite high as 
compared to that for an unvoiced speech frame. These two 
features have been used in the ZCR-E-based speech classi-
fiers. The steps involved in using this algorithm for speech 
classification are as follows:

(i)	 Take the speech signal to be analyzed.
(ii)	 Take the first frame of the speech signal.
(iii)	Compute the energy, E, for the speech frame using (6).
(iv)	Compare E with a constant threshold value, ETHR. If 

E ≤ ETHR, then the speech frame is classified as an un-
voiced frame.

(v)	 If E  >  ETHR, then obtain ZCR (FZCR) using (5) for the 
speech frame and compare it with constant threshold, TZCR. 
If FZCR ≤ TZCR, then the speech frame is classified as a 
voiced frame, else it is classified as an unvoiced frame.

The threshold values, THR1, THR2, THR3, and TZCR, for the 
entire frame of each utterance are taken as the median val-
ues of TP1, Tmin, TP2, and FZCR, respectively. These thresholds 
were calculated and updated for every utterance in the data-
base. The short-time energy threshold of ETHR = 0.05 was 
considered in the ZCR-E speech classifier.

2.6  |  NN-based speech classifier

The steps involved in using the NN-based speech classifier 
for speech classification are as follows:

(i)	 Take the speech signal to be analyzed.
(ii)	 Take the first frame of the speech signal.
(iii)	Compute the feature vector using waveform analysis and 

linear predictive (LP) analysis.
(iv)	Train the network with the training samples.
(v)	 Compute the performance of the network classifier using 

the dataset.

In this work, an NN with a single hidden layer having 20 
nodes (15-20-2 network architecture) has been used. A fea-
ture vector was obtained for each frame of 20 ms which con-
sists of 13 cepstral coefficients and two waveform parameters 
(rms energy and ZCR). The energy prediction error and 12 
LP coefficients were used to derive the cepstral coefficients. 
The LP coefficients were obtained by using windowing, au-
tocorrelation, and pre-emphasis. A generalized delta rule for 
the back propagation of error (with a learning rate of 0.9) 
was used to train the network. A subset of data was randomly 
selected from the speech database (that is, the database which 
has been used for the performance evaluation) to train the 
network. The voiced/unvoiced frame classification of the 
input signals was made after the network training was com-
pleted. The output vector is a binary decision of the voiced/
unvoiced frame, where the first and second outputs indicate 
the voiced frame and unvoiced frame, respectively. An output 
vector coded as [1, 0] indicates a voiced frame, while the vec-
tor [0, 1] indicates an unvoiced frame.

3  |   IMPLEMENTATION OF 
ANALYSIS-SYNTHESIS SYSTEM 
USING DIFFERENT SPEECH 
CLASSIFIERS

All six speech classifiers have been developed using the 
SIMULINK and integrated in the LPC-based speech anal-
ysis-synthesis system [22,23] which is based on the source 

(6)E=
1

N

N−1∑

n=0

|x (n)|2.

F I G U R E  1   Block diagram of the speech production model
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filter model of speech production. A block diagram of the 
speech production model is presented in Figure 1. Here, the 
excitation is presented as an impulse train and random noise 
sequence for the voiced and unvoiced speech respectively.

In the LPC analysis-synthesis system, the vocal tract is 
modeled as an all-poll infinite impulse response filter and the 
transfer function is given by:

where, S(z) and U(z) are the z-transform of the synthesized 
speech signal s(n) and excitation signal u(n), respectively. G 
represents the gain of the filter and a(k) represents the filter co-
efficients which are calculated by:

where R is a p × p matrix and r n is the p × 1 matrix of the 
speech signal. The gain of the filter is calculated as:

Six separate analysis-synthesis models have been de-
veloped using the speech classifiers described in Section 2. 
The autocorrelation method has been used for extracting the 
pitch from the speech signals in all the cases. For the anal-
ysis, the speech signals were divided into frames of length 
20 ms. Using linear predictive analysis [22,23], the filter pa-
rameters, namely, the gain, G, the filter coefficients, a(k), the 
voiced/unvoiced frame classification, and the pitch period, 
were determined from the speech signal. Prediction order 15 
was used for the LPC analysis. At the synthesis stage, an im-
pulse train corresponding to the estimated pitch period of the 
voiced frame was generated. Random-noise-like excitation 
was used for the unvoiced frame. Finally, the speech signal 
was reconstructed using a proper excitation signal, gain, and 
filter coefficient.

The simulation models were created in SIMULINK (in 
MATLAB) using the blocks available in its library. The 
blocks which were not available in the library were cre-
ated using the Embedded Matlab function utility. The sim-
ulation models were modified to build real-time models. 
The TMS320C6713 DSP starter kit (DSK) was used for re-
al-time implementation and aC6713DSK target preference 
block (available in SIMULINK) was used to configure the 
simulation model. The sampling and framing of the input 
speech signal was achieved by the analog-to-digital (ADC) 
block, while a digital-to-analog (DAC) block was used at 
the output port of the system for obtaining a continuous 
signal from the digital signal. The rate transition blocks 
were used (inserted between the two blocks which were 

operating at different sampling rates) to ensure determin-
istic data transfer in real time. A buffer block at the out-
put port just before the DAC block was used for obtaining 
continuous speech output (samples) without any loss of the 
sample.

4  |   PERFORMANCE COMPARISON 
RESULTS

The performance of the speech classifiers has been com-
pared in terms of the percentage of their classification 
accuracy, speech quality (MOS and PESQ), [27,28] and 
execution time [23] by applying them to the PTDB-TUG 
[25] speech database (clean speeches) and NOIZEUS 
(noisy speeches with different SNRs) [26]. The PTDB-
TUG database consists of recordings of 20 English speak-
ers (10 male and 10 female) reading phonetically rich 
sentences from the TIMIT database. A subset of this da-
tabase, consisting of 40 speech files (20 by males and 20 
by females) was used in the investigation. White noise 
was added to the PTDB-TUG database in order to obtain 
different levels of SNRs (15  dB, 10  dB, 5  dB, 0  dB and 
‒5 dB). The NOIZEUS database consists of recordings of 
30 sentences spoken by six English speakers (three male 
and three female) and corrupted by noise due to cars, bab-
ble noise, noise in exhibition halls, restaurant noise, subur-
ban train noise, train-station noise, noise on airports, and 
street noise. Since white noise, car noise, and babble noise 
(crowd of people) are usually used in speech processing, 
these three types of noise were used for the performance 
evaluation of the speech classifiers chosen in this work.

4.1  |  Percentage of the voiced/unvoiced 
speech classification accuracy

The percentage of the voiced/unvoiced speech classification 
accuracy for speech signals having different levels of SNRs 
has been calculated and listed in Table 1. Before adding noise 
samples in each of the utterance, the percentage of voiced 
speech samples was maintained at 50% by appending a re-
quired duration of silence. Manual classification of speech 
material was performed by two experienced people. The per-
centage classification accuracy is computed as:

where PVU denotes the percentage of voiced speech classified 
as unvoiced and PUV denotes the percentage of unvoiced speech 
classified as voiced.

From the obtained results given in Table 1, it can be seen 
that the classification accuracy of all speech classifiers is good 

(7)H (z)=
S (z)

U (z)
=

G

1−
∑p

k=1
a (k) z−k

,

(8)a=−R
−1rn,

(9)G2 = rn (0)−

p∑

k=1

a (k) rn (k).

(10)P
C
=1−

(
0.5×P

VU
+0.5×P

UV

)
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T A B L E  1   Percentage of the voice/unvoiced speech classification accuracy for the six speech classifiers investigated in this work

Noise type
SNR
(dB) PC/PVU/PUV

Speech classifiers

ACF AMDF Cepstrum WACF ZCR-E NN

Clean speech Clean speech PC 96.55 95.52 95.60 96.78 96.22 96.92

PVU 3.12 3.80 3.35 3.32 3.92 3.04

PUV 3.77 5.16 5.45 3.13 3.64 3.12

Speech corrupted with white noise 15 PC 96.14 95.10 95.09 96.62 95.12 96.88

PVU 3.68 3.89 3.92 3.85 7.92 3.24

PUV 4.04 5.91 5.90 2.91 1.84 3.00

10 PC 95.48 84.25 84.40 95.65 84.62 96.16

PVU 3.54 1.25 6.92 5.26 29.35 4.42

PUV 5.51 30.26 24.28 3.44 1.41 3.26

5 PC 93.12 63.33 63.39 94.75 63.40 95.36

PVU 3.85 1.03 8.02 6.75 72.88 5.64

PUV 9.91 72.31 65.20 3.75 0.32 3.64

0 PC 61.83 51.05 53.35 85.62 55.32 87.92

PVU 0.65 0.05 1.35 8.65 19.36 7.71

PUV 75.69 97.85 91.95 20.11 70.00 16.45

‒5 PC 50.76 50.00 50.03 64.84 52.34 67.54

PVU 0.06 00.00 0.01 5.68 15.32 6.95

PUV 98.42 100.00 99.93 64.64 80.00 57.97

Speech corrupted with car noise 15 PC 96.02 94.90 94.98 96.56 95.00 96.75

PVU 3.11 2.25 2.89 3.72 7.89 3.66

PUV 4.85 7.95 7.15 3.15 2.10 2.84

10 PC 95.15 81.81 82.66 95.29 82.86 96.62

PVU 3.42 1.17 2.91 4.58 8.74 3.92

PUV 6.28 35.21 31.77 4.84 25.54 2.84

5 PC 76.72 56.61 58.88 88.32 61.34 90.86

PVU 1.15 0.83 1.05 5.32 17.18 5.46

PUV 45.42 85.95 81.19 18.04 59.56 12.82

0 PC 57.13 50.00 52.52 69.34 53.12 72.54

PVU 0.12 00.00 0.06 6.24 3.12 5.98

PUV 85.63 100.00 94.90 55.08 90.64 48.94

‒5 PC 50.22 50.00 50.02 54.59 52.94 59.62

PVU 00.02 00.00 0.02 1.23 0.75 2.14

PUV 99.54 100.00 99.94 89.59 93.37 78.62

Speech corrupted with babble noise 15 PC 95.29 92.21 92.34 96.20 94.12 96.72

PVU 3.45 2.12 3.14 3.45 6.50 3.61

PUV 5.98 13.46 12.18 4.15 5.26 2.95

10 PC 77.07 69.45 70.11 78.95 76.83 82.98

PVU 2.31 0.98 1.21 3.12 7.32 4.61

PUV 43.55 60.12 58.57 38.98 39.02 29.43

5 PC 64.99 53.50 55.12 65.54 60.13 71.87

PVU 0.91 0.05 0.90 1.85 12.31 2.29

PUV 69.12 92.95 88.86 67.07 67.43 53.97

(Continues)
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for clean speech and gets degraded as the SNR of the sample 
is decreased. The accuracy of the NN-based speech classifier 
is observed to be higher than the ACF-, AMDF-, WACF- and 
ZCR-E-based speech classifiers for all types of noise consid-
ered in the performance evaluation. The NN-based classi-
fier has the highest percentage accuracy of 96.92% for clean 
speech. However, in the case of noisy speech, it is 96.88% for 
white noise with an SNR level of 15dB. This classifier has 
the lowest classification accuracy of 58.64% for the babble 
noise with an SNR of ‒5dB, where PUV is maximum, that is, 
80.51%. However, in case of white noise and car noise with 
‒5 dB SNR, the lowest accuracies for the NN-based classifier 
of 67.54% and 59.62% respectively are obtained. For these 
cases, PVU and PUV are 6.95, 57.97, and 2.14, 78.62, respec-
tively. The range of accuracy for the NN-based classifier 
lies between 58.64% and 96.92%. The highest classification 
accuracies for the ACF-, AMDF-, cepstrum-, WACF- and 
ZCR-E-based speech classifiers for clean speech are 96.55%, 
95.52%, 95.60%, 96.78%, and 96.22% respectively. However, 
the lowest classification accuracy for these methods are 
50.00%, 50.00%, 50.00%, 50.80%, and 51.15% in the case of 
speech corrupted with babble noise. In these cases, the PUV 
are 100.00%, 100.00%, 100.00%, 97.24%, and 97.25%. From 
the results, it can be observed that for babble noise with ‒5dB 
SNR, the ACF-, AMDF- and cepstrum-based classifiers 
classify all the unvoiced speech segments as voiced speech 
segments, which results in the lowest classification accuracy. 
The highest classification accuracies of these classifiers in the 
case of noisy speech are 96.14%, 95.10%, 95.09%, 96.62%, 
and 95.12%, respectively, for speech corrupted using white 
noise with an SNR of 15dB. Based on these results, the rank-
ing of the different classifiers based on their classification ac-
curacy in the decreasing order and corresponding to higher 
levels of SNR (15 dB to 5 dB) is as follows: NN > WACF > 
ACF > ZCR-E > cepstrum > AMDF.

From the results corresponding to the white noise and car 
noise having 0 dB SNR, the accuracy of NN-and WACF-based 
classifier is observed to be higher than the other classifiers. The 
ranking based on their performance from high to low accuracy 
is as follows: NN > WACF > ACF > ZCR-E > cepstrum > 
AMDF. However, the results corresponding to babble noise 

with 0 dB SNR, show that the accuracy of NN- and ZCR-E-
based speech classifiers is higher than the other classifiers and 
ranking order in this case (from high to low accuracy) is: NN > 
ZCR-E > WACF > ACF > cepstrum > AMDF.

From the results corresponding to the white noise and car 
noise with very low level of SNR (‒5 dB), the classification 
accuracy for the NN- and WACF-based classifiers is higher 
as compared to the other speech classifiers. The order of their 
performance from high accuracy to low accuracy is: NN > 
WACF > ZCR-E > ACF > cepstrum > AMDF. However, in 
the case of babble noise, NN- and ZCR-E-based classifiers 
exhibit a higher accuracy as compared to the other classifiers. 
The ranking from high to low accuracy in this case is: NN > 
ZCR-E > WACF > ACF > cepstrum > AMDF.

Thus, from the results discussed above, it can be seen that 
the classification accuracy of the AMDF-based speech classi-
fier is worst in all the cases (that is, for both clean and noisy 
speech signals) and its accuracy range lies between 50.00%–
95.52%. Further, it can be observed that the degradation in the 
performance of all speech classifiers (in most of the cases) is 
mainly due to the PUV error (where the unvoiced speech is 
classified as voiced), which increases with the degradation in 
the SNR levels. In addition, the accuracy of the speech classi-
fiers is also observed to vary with the different types of noise.

4.2  |  Results of the subjective (MOS) and 
objective (PESQ) speech quality tests

In this work, the MOS listening test, which is a well-known 
subjective method for measuring the speech quality, has been 
used for comparing the performance of the six speech clas-
sifiers. In this test, 25 listeners were chosen to rate their re-
sponse on a scale of 1 and 5 (where a score of 1 corresponds 
to a low speech quality and 5 corresponds to an excellent 
speech quality). The test results thus obtained are presented 
in Table  2. The MOS scores for the original unprocessed 
speech have also been presented in the table for reference.

An objective speech quality test, namely, PESQ, based 
on the ITU-T P.862 recommendation, has been performed 
for evaluating the performance of the six speech classifiers. 

Noise type
SNR
(dB) PC/PVU/PUV

Speech classifiers

ACF AMDF Cepstrum WACF ZCR-E NN

0 PC 50.80 50.00 50.10 51.95 52.32 61.06

PVU 0.04 0.00 0.04 1.63 2.98 1.98

PUV 98.37 100.00 99.76 94.47 92.38 75.9

‒5 PC 50.00 50.00 50.00 50.80 51.15 58.64

PVU 0.00 0.00 0.00 1.16 0.45 2.21

PUV 100.00 100.00 100.00 97.24 97.25 80.51

T A B L E  1   (Continued)
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In the PESQ test, the processed speech signal has been com-
pared with the original speech signal. The resultant PESQ 
score is marked with a scale ranging between ‒0.5 and 4.5.

From the results of MOS and PESQ presented in Tables 2 
and 3, respectively, it can be seen that the speech quality for 
all speech classifiers is satisfactory for clean speech as well 
as speech corrupted with lower SNRs. The speech quality 

for the NN-based speech classifier is better than that for 
the other five speech classifiers in the case of both clean 
speech and noisy speech with SNR levels from ‒5  dB to 
15 dB. The highest MOS and PESQ scores obtained for the 
NN-based classifier are 3.72 and 3.44, respectively for the 
clean speech samples. The range of the MOS score for this 
classifier lies between 1.88‒3.54, 1.79–3.68, and 1.68–3.67 

T A B L E  2   Results of the MOS test for the six speech classifiers

Noise type
SNR
(dB)

Original unprocessed 
speech

Speech classifiers

ACF AMDF Cepstrum WACF ZCR-E NN

Clean speech Clean speech 4.60 3.45 3.25 3.25 3.52 3.30 3.72

Speech corrupted with 
white noise

15 4.45 3.39 3.16 3.18 3.47 3.18 3.54

10 4.18 3.13 2.72 2.75 3.16 2.82 3.29

5 3.42 2.78 2.31 2.35 2.82 2.36 3.02

0 2.66 1.98 1.80 1.88 2.16 1.96 2.29

‒5 2.13 1.49 1.38 1.40 1.75 1.52 1.88

Speech corrupted with 
car noise

15 4.45 3.38 3.10 3.10 3.45 3.12 3.68

10 4.15 3.11 2.70 2.75 3.15 2.80 3.23

5 3.40 2.75 2.30 2.32 2.80 2.35 2.98

0 2.65 1.98 1.80 1.85 2.15 1.95 2.21

‒5 2.12 1.47 1.36 1.40 1.62 1.52 1.79

Speech corrupted with 
babble noise

15 4.43 3.34 3.02 3.05 3.42 3.09 3.67

10 4.10 3.05 2.66 2.72 3.12 2.75 3.20

5 3.36 2.66 2.24 2.30 2.76 2.31 2.94

0 2.60 1.87 1.75 1.79 1.91 1.92 2.02

‒5 2.03 1.35 1.27 1.32 1.39 1.50 1.68

T A B L E  3   Results of the PESQ test for the six speech classifiers

Noise type
SNR
(dB)

Original unprocessed 
speech

Speech classifiers

ACF AMDF Cepstrum WACF ZCR-E NN

For clean speech Clean speech 4.50 3.28 3.12 3.12 3.29 3.12 3.44

Speech corrupted with 
white noise

15 4.01 2.94 2.79 2.82 2.97 2.85 3.10

10 3.77 2.56 2.41 2.46 2.71 2.55 2.94

5 2.28 2.26 1.88 1.90 2.33 2.21 2.67

0 2.05 1.45 1.35 1.36 1.59 1.40 1.76

‒5 1.47 0.98 0.93 0.93 1.01 1.00 1.20

Speech corrupted with 
car noise

15 3.98 2.92 2.77 2.80 2.95 2.85 3.02

10 3.59 2.55 2.35 2.40 2.70 2.53 2.90

5 2.25 2.20 1.85 1.89 2.31 2.19 2.53

0 1.98 1.39 1.31 1.33 1.54 1.36 1.68

‒5 1.42 0.95 0.90 0.92 1.00 0.96 1.17

Speech corrupted with 
babble noise

15 3.95 2.91 2.77 2.79 2.95 2.83 3.02

10 3.45 2.55 2.34 2.37 2.69 2.53 2.89

5 2.19 2.19 1.69 1.73 2.30 2.13 2.48

0 1.85 1.14 1.06 1.11 1.23 1.35 1.55

‒5 1.31 0.89 0.82 0.85 0.92 0.95 1.12
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for speech corrupted with white, car, and babble noise, re-
spectively, whereas, the range of the PESQ score for the 
same lies between 1.20‒3.10, 1.17‒3.02, and 1.12‒3.02, 
respectively. The speech quality for the AMDF-based clas-
sifier is poor as compared to that for the other five classifi-
ers in all the cases. The highest and lowest MOS scores for 
the AMDF-based classifier are 3.25 (for clean speech) and 
1.27 (for speech corrupted with babble noise having a ‒5dB 
SNR), whereas, the highest and lowest PESQ scores for this 
classifier are 3.12 and 1.27, respectively.

For speech corrupted by white noise and car noise with 
a 0 dB SNR level, the speech quality for the NN-based clas-
sifier is superior to that of the other five classifiers. In this 
case, the MOS scores for the NN-based classifier are 2.29 
and 2.21, respectively, while the PESQ scores are 1.76 and 
1.68, respectively for the two types of noise. The speech 
quality for the WACF-based speech classifier is higher than 
that for the ACF-, AMDF-, cepstrum-, and ZCR-E-based 
classifiers. For the WACF-based classifier, the MOS scores 
corresponding to white noise and car noise with 0 dB SNR 
are 2.16 and 2.15, respectively, whereas, the PESQ scores 
for the same are 1.59 and 1.54, respectively. In the case 
of ACF-, AMDF-, cepstrum-, and ZCR-E-based classifiers 
applied to speech data corrupted with white noise and car 
noise having 0  dB SNR, the MOS scores are 1.98, 1.80, 
1.88, and 1.96 and 1.98, 1.80, 1.85, and 1.95, respectively. 
The PESQ scores for the same are 1.45, 1.35, 1.36, and 
1.40 and 1.39, 1.31, 1.33, and 1.36, respectively. In the 
case of speech samples corrupted by babble noise having 
0  dB SNR, the speech quality obtained from the ZCR-E-
based classifier is higher than that obtained from the ACF-, 
AMDF-, cepstrum-, and WACF-based speech classifiers. In 
this case, the MOS and PESQ scores for the ZCR-E-based 
classifier are 1.92 and 1.35, respectively. Similarly, the 
MOS and PESQ scores for the ACF-, AMDF-, cepstrum-, 
and WACF-based classifiers are 1.87, 1.75, 1.79, and 1.91 
and 1.14, 1.06, 1.11, and 1.23, respectively.

For very low SNR (‒5 dB) where the speech has been cor-
rupted by white noise and car noise, the speech quality for the 
NN-based classifier is the highest, followed by the WACF- 
ACF-, ZCR-E-, cepstrum-, and AMDF-based classifiers. In 
this case, the highest MOS and PESQ scores, 1.75 and 1.01, 
respectively are obtained for the WACF-based classifier ap-
plied to speech corrupted by white noise. The MOS and PESQ 
scores obtained for this classifier when applied to speech cor-
rupted by car noise are 1.62 and 1.00, respectively. The MOS 
and PESQ scores for ACF-, ZCR-E-, cepstrum- and AMDF-in 
the case of white noise (having ‒5 dB  SNR) are 1.49, 1.52, 1.40,  
and 1.38 and 0.98, 1.00, 0.93, and 0.93, respectively. However, 
in the case of speech corrupted by car noise, the MOS and 
PESQ scores for these classifiers are 1.47, 1.52, 1.40, and 
1.36 and 0.95, 0.96, 0.92, and 0.90, respectively. In case of 
speech corrupted by babble noise having a very low SNR of 

‒5 dB, the quality of the synthesized speech for the NN-based 
classifier is the highest, with MOS and PESQ scores of 1.68 
and 1.12, respectively, and the quality for the ZCR-E-based 
classifier is better than that for the ACF-, WACF-, cepstrum-, 
and AMDF-based classifiers. In this case, the MOS and PESQ 
scores for ZCR-E-based classifiers are 1.50 and 0.95, respec-
tively, while the corresponding scores for the ACF-, WACF-, 
cepstrum-, and AMDF-based classifiers are 1.35, 1.39, 1.32, 
and 1.27 and 0.89, 0.92, 0.85, and 0.82, respectively.

4.3  |  Computation time

4.3.1  |  Simulation time

A total of 20 speech files were used to calculate the average 
simulation time for the system using the six speech classifiers. 
Each file was tested 10 times and the simulation time taken 
during each test iteration was noted using the profiler tool [23]. 
This process was repeated for each classifier and an average of 
these measurements for each speech file was calculated for the 
six classifiers. The resultant values are presented in Table 4.

From the table, it can be seen that the simulation time for the 
AMDF-based speech classifier is the smallest as compared to that 
corresponding to the other speech classifiers. The minimum and 
maximum simulation times for the AMDF-based classifier are 
19.98 ms and 20.88 ms, respectively. The NN-based method takes 
a longer amount of simulation time compared to the other five 
speech classifiers. The minimum simulation time for the NN-based 
method is 20.84 ms. The cepstrum-based method takes a longer 
amount of simulation time as compared to the other methods ex-
cept the NN-based speech classifier. The minimum and maximum 
simulation times for the cepstrum-based classifier are 20.39 ms 
and 21.32 ms, respectively. Further, the simulation time for the 
ACF-based speech classifier is less than that for the WACF-, NN-, 
cepstrum- and ZCR-E-based speech classifiers. The minimum 
simulation time for the ACF-based classifier is 20.10 ms.

4.3.2  |  Execution time (real-time 
implementation)

The execution times for the analysis-synthesis system employ-
ing the six speech classifiers have been calculated using the 
breakpoint method [23]. The results thus obtained are presented 
in Table 5. The execution time was calculated as follows:

where the average number of cycles was calculated for each 
frame. The length of each frame was 20 ms. The execution time 
per cycle was 4.44 ns for the TMS320C6713 processor (having 
a clock frequency of 225 MHz).

(11)Execution Time=

(Average number of cycles for each frame × Execution time per cycle)
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From the result presented in Table 5, it can be seen that 
the execution time for the AMDF-based speech classifier is 
18.454 ms, which is the least as compared to the other five 
speech classifiers. The execution time for the NN-based 
speech classifier (19.941 ms) is higher than that for the other 
speech classifiers while that for the cepstrum-based clas-
sifier is 19.802  ms, which is more than that for the ACF-, 
AMDF-, WACF- and ZCR-E-based classifiers, but less than 
that for the NN-based classifier. The execution times for the 
ACF-, WACF- and ZCR-E-based classifiers are 19.664 ms, 
19.797 ms, and 19.764 ms, respectively. The NN-, cepstrum-, 
WACF- and ZCR-E-based speech classifiers have higher ex-
ecution times as compared to the ACF- and AMDF-based 

classifiers. This can be explained as follows: the AMDF 
function involves only a modulus and addition operation and 
hence is computationally simpler than the other speech classi-
fiers. The ACF-based classifier is has a higher computational 
complexity as compared to the AMDF-based classifier since 
it involves a summation of products [23,29,30]. The ceps-
trum method is computationally complex because it involves 
the computation of the Fourier transform, inverse Fourier 
transform, and logarithmic operation of the power spectrum. 
However, due to the multiple features used in the hybrid clas-
sifiers (WACF, ZCR-E and NN), they are computationally 
more complex than the ACF- and AMDF-based classifiers.

From the results of the performance comparison pre-
sented above, it can be seen that the overall ranking of the 
speech classifiers investigated in this work is not a simple 
task, since all the classifiers do not perform well (in terms 
of the percentage classification accuracy and speech qual-
ity) in all the situations and their performance differs for 
different SNR. In addition, their performance also depends 
on the type of background noise. From the results of the 
computation time, it is seen that the classifiers that exhibit 
a higher classification accuracy and speech quality also ex-
hibit higher computational complexity, while some exhibit 
lower computational complexity as well as lower classifica-
tion accuracy and speech quality. Thus, as a solution of this 

T A B L E  4   Values of the average simulation time for the six speech classifiers

Speech file (.wav)
Length of speech 
(sec)

Total number of frames 
processed

Speech classifiers (Time/frame in ms)

ACF AMDF Cepstrum WACF ZCR-E NN

s1 6.88 344 20.26 20.21 20.45 20.40 20.38 21.04

s2 7.41 371 20.12 20.05 20.39 20.32 20.31 20.95

s3 7.99 400 20.65 20.62 20.90 20.81 20.74 20.94

s4 8.06 403 20.55 20.35 20.85 20.72 20.65 20.89

s5 9.43 472 20.41 20.39 20.85 20.55 20.52 21.02

s6 9.16 458 20.95 20.88 21.32 21.19 21.07 21.85

s7 7.14 357 20.44 20.37 20.92 20.75 20.65 21.10

s8 6.87 344 20.62 20.52 20.90 20.84 20.81 21.12

s9 6.75 338 20.26 20.12 20.75 20.51 20.44 20.94

s10 6.87 344 20.10 19.98 20.45 20.39 20.33 20.84

s11 6.16 308 20.46 20.35 20.92 20.78 20.62 20.98

s12 7.47 374 20.22 20.16 20.69 20.55 20.49 20.97

s13 7.92 396 20.47 20.45 21.02 20.91 20.74 21.21

s14 5.61 281 20.17 20.15 20.68 20.52 20.31 20.95

s15 6.82 341 20.39 20.31 20.90 20.73 20.52 21.14

s16 5.60 280 20.14 20.09 20.72 20.51 20.38 20.85

s17 6.74 337 20.51 20.36 20.98 20.89 20.76 21.08

s18 7.12 356 20.40 20.34 20.76 20.67 20.66 20.88

s19 6.12 306 20.29 20.22 20.85 20.77 20.72 20.96

s20 6.62 331 20.20 20.12 20.69 20.59 20.49 20.98

T A B L E  5   Execution time for the six speech classifiers

Speech classifier used
Avg no. of 
cycles

Execution 
time (in ms)

ACF 4 428 878 19.664

AMDF 4 156 321 18.454

Cepstrum 4 459 988 19.802

WACF 4 458 984 19.797

ZCR-E 4 451 572 19.764

NN 4 491 198 19.941
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problem, the ranking was divided into two categories. In the 
first category, two parameters, namely, the percentage clas-
sification accuracy and speech quality, were used to rank 
the performance of the six speech classifiers, as presented 
in Table 6. In the second category, the computational com-
plexity, measured on the basis of the simulation and execu-
tion time, was used to rank the different speech classifiers, 
as presented in Table 7.

Based on the results of performance ranking, we can 
see that the NN-based speech classifier is better than the 
other five classifiers for clean as well as noisy speech with 
higher as well as lower values of SNR. For all the cases, 
the NN-based classifier turns out to be a superior choice. 
However, the WACF-based classifier may be used as a sec-
ond choice as it shows a better performance as compared to 
the ACF-, AMDF- and ZCR-E-based classifiers in the case 
of noisy speech with an SNR of 15 dB, 10 dB, 5 dB, and 
0  dB (except babble noise having 0  dB SNR). However, 
both these hybrid speech classifiers are computationally 
complex than the ACF-, AMDF- and ZCR-E-based speech 
classifiers. Based on the performance evaluation results 
in case of higher SNRs(15dB, 10dB and 5dB), the per-
formance ranking of the classifiers, in terms of their clas-
sification accuracy and synthesized speech quality, from 
first to last are: NN, WACF, ACF, ZCR-E, cepstrum and 
AMDF. In case of lower SNRs (0  dB and ‒5  dB), NN-, 
ACF-, cepstrum- and AMDF-based classifiers are ranked 
1st, 4th, 5th, and 6th respectively in terms of their clas-
sification accuracy and speech quality, while the perfor-
mance of WACF- and ZCR-E-based classifiers in this case 
is comparable to each other. From Table 7, it can be seen 
that the AMDF-, ACF-, ZCR-E-, WACF-, cepstrum and 
NN-based classifiers are ranked 1st, 2nd, 3rd, 4th, 5th, and 

6th, respectively, on the basis of their computational com-
plexity. Further, the AMDF-based classifier exhibits less 
computational complexity than the other classifiers and 
may turn out to be used as the first choice in the cases 
where the computational complexity is an issue. However, 
the NN-based classifiers can be used as the first choice 
where a higher classification accuracy and synthesized 
speech quality are desirable.

5  |   CONCLUSIONS

Six voiced/unvoiced speech classifiers based on ACF, 
AMDF, cepstrum WACF, ZCR-E and NN have been simu-
lated and implemented in real time using a TMS320C6713 
DSP starter kit. The performance of these classifiers has been 
measured by integrating them into an LPC-based speech 
analysis-synthesis system. The percentage voiced/unvoiced 
classification accuracy, speech quality, and computation 
time were chosen as the parameters for carrying out their 
performance comparison. On the basis of these parameters, 
the overall performance ranking of the classifiers was estab-
lished in two categories. It has been found that all six speech 
classifiers perform well for clean speech, but their perfor-
mance degrades with a degradation in the SNR. The per-
formance of all six classifiers also varies with the variation 
in the type of background noise. Results of the percentage 
voiced/unvoiced classification accuracy and speech quality 
show that the NN-based speech classifier performs better 
than the other five classifiers for all SNR levels. However, 
the percentage classification accuracy and speech quality for 
the AMDF-based speech classifier is the poorest in all the 
cases. Further, the performance of the WACF- and ZCR-E-
based classifiers is comparable for very low SNR (‒5 dB) 
level. The computational complexity of the AMDF-based 
speech classifier is the least as compared to the other five 
classifiers while that corresponding to the NN-based classi-
fier is the highest.

ORCID
Sandeep Kumar   https://orcid.org/0000-0001-9922-2663 

SNR level Noise type

Speech classifiers

ACF AMDF Cepstrum WACF ZCR-E NN

15 dB, 10 dB, 5 dB white, car, babble 3rd 6th 5th 2nd 4th 1st

0 dB white, car 3rd 6th 5th 2nd 4th 1st

babble 4th 6th 5th 3rd 2nd 1st

‒5 dB white, car 4th 6th 5th 2nd 3rd 1st

babble 4th 6th 5th 3rd 2nd 1st
†The 1st rank corresponds to the highest classification accuracy and speech quality, while 6th rank represents 
the lowest accuracy and synthesized speech quality. 

T A B L E  6   Performance ranking† of the 
six speech classifiers on the basis of their 
synthesized speech quality and percentage 
classification accuracy

T A B L E  7   Performance ranking‡ of the speech classifiers based 
on their computation time

ACF AMDF Cepstrum WACF ZCR-E NN

2nd 1st 5th 4th 3rd 6th
‡The 1st and 6th ranks represent the lowest and the highest computational 
complexity, respectively. 
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