• Title/Summary/Keyword: Linear Fractional Transformation

Search Result 22, Processing Time 0.027 seconds

LMI-Based Synthesis of Robust Iterative Learning Controller with Current Feedback for Linear Uncertain Systems

  • Xu, Jianming;Sun, Mingxuan;Yu, Li
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.171-179
    • /
    • 2008
  • This paper addresses the synthesis of an iterative learning controller for a class of linear systems with norm-bounded parameter uncertainties. We take into account an iterative learning algorithm with current cycle feedback in order to achieve both robust convergence and robust stability. The synthesis problem of the developed iterative learning control (ILC) system is reformulated as the ${\gamma}$-suboptimal $H_{\infty}$ control problem via the linear fractional transformation (LFT). A sufficient convergence condition of the ILC system is presented in terms of linear matrix inequalities (LMIs). Furthermore, the ILC system with fast convergence rate is constructed using a convex optimization technique with LMI constraints. The simulation results demonstrate the effectiveness of the proposed method.

Research and Experimental Implementation of a CV-FOINC Algorithm Using MPPT for PV Power System

  • Arulmurugan, R.;Venkatesan, T.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1389-1399
    • /
    • 2015
  • This research suggests maximum power point tracking (MPPT) for the solar photovoltaic (PV) power scheme using a new constant voltage (CV) fractional order incremental conductance (FOINC) algorithm. The PV panel has low transformation efficiency and power output of PV panel depends on the change in weather conditions. Possible extracting power can be raised to a battery load utilizing a MPPT algorithm. Among all the MPPT strategies, the incremental conductance (INC) algorithm is mostly employed due to easy implementation, less fluctuations and faster tracking, which is not only has the merits of INC, fractional order can deliver a dynamic mathematical modelling to define non-linear physiognomies. CV-FOINC variation as dynamic variable is exploited to regulate the PV power toward the peak operating point. For a lesser scale photovoltaic conversion scheme, the suggested technique is validated by simulation with dissimilar operating conditions. Contributions are made in numerous aspects of the entire system, including new control algorithm design, system simulation, converter design, programming into simulation environment and experimental setup. The results confirm that the small tracking period and practicality in tracking of photovoltaic array.

Mixed $H^{2}$/$H^{\infty}$ controller design for linear system with time delay and parameter uncertainty (시간지연 및 파라미터 불확실성을 갖는 선형시스템의 혼합 $H^{2}$/$H^{\infty}$ 제어기 설계)

  • 이갑래;정은태;박홍배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.560-564
    • /
    • 1996
  • A mixed H$^{2}$/$H^{\infty}$ controller design method for linear systems with time delay in all variables and parameter uncertainties in all system matrices is proposed. Robust $H^{\infty}$ performance and H$^{2}$ performance condition that accounts for model-matching of closed loop system and disturbance rejection is also derived. With expressing uncertain system with linear fractional transformation form, we transform the robust stability and performance problem to the H$^{2}$/$H^{\infty}$ optimization problem and design a mixed H$^{2}$/$H^{\infty}$ controller. Using the proposed method, mixed H$^{2}$/$H^{\infty}$ controller for underwater vehicle with time delay and parameter variations are designed. Simulations of a design example with hydrodynamic parameter variations and disturbance are presented to demonstrate the achievement of good robust performance.t performance.ance.

  • PDF

Uncertainty Modeling and Robust Control for LCL Resonant Inductive Power Transfer System

  • Dai, Xin;Zou, Yang;Sun, Yue
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.814-828
    • /
    • 2013
  • The LCL resonant inductive power transfer (IPT) system is increasingly used because of its harmonic filtering capabilities, high efficiency at light load, and unity power factor feature. However, the modeling and controller design of this system become extremely difficult because of parameter uncertainty, high-order property, and switching nonlinear property. This paper proposes a frequency and load uncertainty modeling method for the LCL resonant IPT system. By using the linear fractional transformation method, we detach the uncertain part from the system model. A robust control structure with weighting functions is introduced, and a control method using structured singular values is used to enhance the system performance of perturbation rejection and reference tracking. Analysis of the controller performance is provided. The simulation and experimental results verify the robust control method and analysis results. The control method not only guarantees system stability but also improves performance under perturbation.

A Study on Modeling and Identification for the Magnetic Bearing System (자기 베어링 시스템의 모델링 및 동정에 관한 연구)

  • Shim, S.H.;Kim, C.H.;Yang, J.H.
    • Journal of Power System Engineering
    • /
    • v.5 no.4
    • /
    • pp.44-52
    • /
    • 2001
  • This paper considers a modeling and identification for the MIMO magnetic bearing system. To obtain the nominal plant transfer functions, we have experimented on the frequency response by a closed-loop identification method because the system is unstable essentially. We suggest a method of curve-fitting for obtaining the transfer function from the frequency responses by using the system's modeling structure and two controllers which are different from each other. From the frequency response results, we found the effects of coupling by opposing controllers. And using this effects and the system's modeling structure, we could obtain the transfer functions of which have the same modularized denominators.

  • PDF

A unified solution to optimal Hankel-Norm approximation problem (최적 한켈 놈 근사화 문제의 통합형 해)

  • Youn, Sang-Soon;Kwon, Oh-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.2
    • /
    • pp.170-177
    • /
    • 1998
  • In this paper, a unified solution of Hankel norm approximation problem is proposed by $\delta$-operator. To derive the main result, all-pass property is derived from the inner and co-inner property in the $\delta$-domain. The solution of all-pass becomes an optimal Hankel norm approximation problem in .delta.-domain through LLFT(Low Linear Fractional Transformation) inserting feedback term $\phi(\gamma)$, which is a free design parameter, to hold the error bound desired against the variance between the original model and the solution of Hankel norm approximation problem. The proposed solution does not only cover continuous and discrete ones depending on sampling interval but also plays a key role in robust control and model reduction problem. The verification of the proposed solution is exemplified via simulation for the zero-order Hankel norm approximation problem and the model reduction problem applied to a 16th order MIMO system.

  • PDF

Design of LFT-Based T-S Fuzzy Controller for Model-Following using LMIs (선형 행렬부등식과 분해법을 이용한 퍼지제어기 설계)

  • 손홍엽;이희진;조영완;김은태;박민용
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.123-128
    • /
    • 1998
  • This paper proposes design of LFT-based fuzzy controllers for model-following, which are better than the previous input-output linearization controllers, which are not able to follow the model system states and which do not guarantee the stability of all states. The method proposed in this paper provides a LFT-based Takagi-Sugeno(T-S) fuzzy controller with guaranteed stability and model-following via the following steps: First, using LFT(Linear Fractional Transformation) and T-S fuzzy model, controllers, are obtained. Next, error dynamics are obtained for model-following, and errors go to 0(zero). Finally, a T-s fuzzy controller that can stabilizxe the system with the requirement on the control input satisfied is obtained by solving the LMIs with the MATLAB LMI Control Toolbox and a model-following controller is obtained. Simulations are performed for the LFT-based T-S fuzzy controller designed by the proposed method, which show better performance than the results of input-out ut linearization controller.

  • PDF

Decentralized Suboptimal $H_2$ Filtering : An Exact Model Matching Approach (완전 모형 일치 기법을 이용한 분산 준최적 $H_2$필터)

  • 조남훈;공재섭;서진헌
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.256-264
    • /
    • 1996
  • In this paper, the decentralized suboptimal H$_{2}$ filtering problem is considered. An additional term is added to the centralized optimal H$_{2}$ filter so that the whole filter is decentralized. We derive a necessary and sufficient condition for existence of proposed decentralized filters By employing the solution procedure for the exact model matching problem, we obtain a set of decentralized H$_{2}$ filters, and choose a suboptimal filter from this set of decentralized H$_{2}$ filters.

  • PDF

Vegetation Mapping of Hawaiian Coastal Lowland Using Remotely Sensed Data (원격탐사 자료를 이용한 하와이 해안지역 식생 분류)

  • Park, Sun-Yurp
    • Journal of the Korean association of regional geographers
    • /
    • v.12 no.4
    • /
    • pp.496-507
    • /
    • 2006
  • A hybrid approach integrating both high-resolution and hyperspectral data sets was used to map vegetation cover of a coastal lowland area in the Hawaii Volcanoes National Park. Three common grass species (broomsedge, natal redtop, and pili) and other non-grass species, primarily shrubs, were focused in the study. A 3-step, hybrid approach, combining an unsupervised and a supervised classification schemes, was applied to the vegetation mapping. First, the IKONOS 1-m high-resolution data were classified to create a binary image (vegetated vs. non--vegetated) and converted to 20-meter resolution percent cover vegetation data to match AVIRIS data pixels. Second, the minimum noise fraction (MNF) transformation was used to extract a coherent dimensionality from the original AVIRIS data. Since the grasses and shubs were sparsely distributed and most image pixels were intermingled with lava surfaces, the reflectance component of lava was filtered out with a binary fractional cover analysis assuming that tile total reflectance of a pixel was a linear combination of the reflectance spectra of vegetation and the lava surface. Finally, a supervised approach was used to classify the plant species based on tile maximum likelihood algorithm.

  • PDF

The Controller Design for Lane Following with 3-Degree of Freedom Vehicle Dynamics (3자유도 차량모델을 이용한 차선추종 µ 제어기 설계)

  • Ji, Sang-Won;Lim, Tae-Woo;You, Sam-Sang;Kim, Hwan-Seong
    • Journal of Power System Engineering
    • /
    • v.17 no.3
    • /
    • pp.72-81
    • /
    • 2013
  • Many articles have been published about a 2-degree of freedom model that includes the lateral and yaw motions for controller synthesis in intelligent transport system applications. In this paper, a 3-degree of freedom linear model that includes the roll motion is developed to design a robust steering controller for lane following maneuvers using ${\mu}$-synthesis. This linear perturbed system includes a set of parametric uncertainties in cornering stiffness and unmodelled dynamics in steering actuators. The state-space model with parametric uncertainties is represented in linear fractional transformation form. Design purpose can be obtained by properly choosing the frequency dependent weighting functions. The objective of this study is to keep the tracking error and steering input energy small in the presence of variations of the cornering stiffness coefficients. Furthermore, good ride quality has to be achieved against these uncertainties. Frequency-domain analyses and time-domain numerical simulations are carried out in order to evaluate these performance specifications of a given vehicle system. Finally, the simulation results indicate that the proposed robust controller achieves good performance over a wide range of uncertainty for the given maneuvers.