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Decentralized Suboptimal H: Filtering : An Exact Model Matching Approach

(Nam-Hoon Jo - Jae-Sop Kong * Jin-Heon Seo)

Abstract - In this paper, the decentralized suboptimal H, filtering problem is considered. An additional term is added to the
centralized optimal H, filter so that the whole filter is decentralized. We derive a necessary and sufficient condition for

existence of proposed decentralized filters. By employing the solution procedure for the exact model matching problem,
we obtain a set of decentralized H, filters, and choose a suboptimal filter from this set of decentralized H, filters.

Key Words :

1. INTRODUCTION

The problem of designing filters for large-scale systems
has been of great interest and many interesting result have
been reported in the literature. When designing a filter for
large-scale systems, the centralized scheme often fails to
hold due to either lack of the overall information or lack of
the centralized computing capability. An approach in [1,2] is
to first construct a set of local filters for the independent
subsystems and then to incorporate appropriate comp-
ensatory signals in order to account for the presence of
interconnections among the subsystems. In [3], the unknown
used to deal with the

interconnection effect in designing local estimators. These

input observer theory was
schemes require the exchange of state estimates among the
subsystem observers, or impose severe restriction on the
decentralized system structure, specially on the

connection pattern. To avoid these difficulties, a knowledge

inter-

of the interconnection pattern is exploited in [4].

In this paper we present a new approach for the design
of decentralized filter using the whole knowledge about the
dynamics of overall systems. Our approach is motivated by
the suboptimal H, controller parameterization result[5] and
is based on the exact model matching problem[6]. We insert
an auxiliary term into the centralized H, optimal filter so
that the decentralized filtering is possible. Then, we will
show that this decentralization problem is reduced to the
exact model matching problem, and derive a existent
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condition of this filter. Using the result in [6] we obtain the
set of proposed decentralized filters and reduce the H,
norm of the filter by reducing that of design parameter
only.

The plan of this paper is as follows: In Section 2, we
propose a suboptimal H, filter which is stable and contains
some design parameter. In Section 3, it is shown that the
proposed suboptimal H, filter reduced to decentralized
suboptimal H, filter when the design parameter satisfies
some conditions.
procedure for this decentralized suboptimal H, filter using
the solution procedure for the exact model matching
problem. In Section 5, an example is given, which illustrates
the proposed decentralized H, filtering. Finally, we present
our conclusions in Section 6.

In Section 4, we present a design

Notations
(1) A transfer matrix in terms of state-space data is
denoted

C(sI-A)'B+D.
(2) Let P(s) be a partitioned matrix with a state-space
realization given by
P, P
P(s) = [ 1 12].
YT Py Py

Then a linear fractional transformation of the partitioned
matrix P and a matrix K is defined as

F(P,K) = P, + P,K(I—PnK)~'P,,.



2. Suboptimal H: filtering

In this section, we consider suboptimal H, filtering of
LTI system driven by noise process w with unit variance:

x = Ax + Bw 21
y = Cx + Dw, (2.2)

where A, B, C and D are, respectively, nxn, nxXm, pxXn

and pxXm matrices, and assume

[ﬂDT = [(}] 23)

We also assume that (A, B) is stabilizable and (C, A)
is detectable.

In state estimation problem, we seek to estimate a linear
combination of the state vector defined by

z = Lx (24

where L is a ¢X» matrix.
Let Z be an estimate of 2 generated from the obser-
vation ¥ by a filter K(s), that is,

z = K(s)y. (25)

The estimation error is

e=2z2— 2. (26)

A B 0
(R e
c:D 0

In H, filtering problem, we seek to minimize the H;
—norm of the transfer function T,(s) from the noise w to
the estimation error e. Recall that 2-norm of the system
G is the expected root-mean-square (RMS) value of the
output when the input is a realization of a unit variance
white noise process.

Since

y = C(sI-A) 'Bw + Duw,

we have
e = L(I-A)'Bw — 2z
= I(sI-A)"'Bw — K[ C(sI—A) 'Bw + Dw].

We denote by P the solution of the Riccati equation

2
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2
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AP +PAT — PCTcP + BBT =,
and define

F= -pPCT, A,= A +FC @7
We decompose

K(s) = Ky(s) + K,(s),

where K, is chosen as

Ky(s) = —L(sI- A)7'F. (2.8)
Note that K(s) reduced to the optimal filter, when
Ki(s) = 0.
From the fractional representations[7],
(sI-A)'B = [I + (sI- AY™'FC 17 (sI- Ap~'B.

We obtain
e = L(sI-A)'Bw + L(sI— Ay) 'FC(sI-A) "' Bw

+ L(sI— Ay)"FDw — Ki(s) ¥

L{I+ (sI— Ay)'FC}(sI-A) "' Bw
+ L(sI— Ay 'FDw — K,(s) y

—~

L(sI— A)) 'Bw + L(sI— A)"'"FDw — K(s) ¥

L(si- A)7'[B + FDlw — K\(s)y.

From the fractional representations[7],
C(sI-A)'B + D
= [I+ OsI- Ap~'FAI™!
[C(sI— A)~NB + FD) + D]
We also have
Kl(s)y= Kl(S) [I+ C(SI— A\D)—IF]_l
[O(sI— A (B+FD) +Dlw

We let
Ki(s) = o)1+ C(sT— Ay ' F},
that is,
As) = K+ C(sI— Ay~'FI7". 29

In section 3, we will construct a decentralized suboptimal
filter K(s) by choosing &Xs) appropriately.
Now, we have

257
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K9y = QI+ sI—- Ay 'Fly

= QAs)[C(sI— Ap) "B + FD) + Dlw,

N)
I

Ky + Ki(s) y
—L(sI— A)"'Fy + QI+ C(sI- Ay 'Fly.

If

Therefore, the filter K(s) can be represented as a linear
fractional representation of the partitioned matrix M(s) and
&Xs) as in Figure 1,

<1 M@s) y

Q(s)

Fig. 1 LFT representation of K(s)

where
A\O M F D
[ ISR _ [ My M,
M(S) _L‘ 0 I [le 22]’
c: 10
where
My(s) = —L(sI— A)7'F, Mp(s) = I,

My(s) =TI+ C(sI— A)'F, Myp(s) =0. (210)

With K(s) defined as above, we obtain

e = L(sI- A '[B + FD]w
— K\ + C(sI— Ay F1™
[C(sI- A)™B + FD) + Dlw
= L(sI—- A) ' [B + FDlw — Qs
[C(sI— A) B + FD) + Dlw

= GA) w — Xs) U(s)w,

(211

258

A, B+ FD
U(s) = | covemreciimmmninnnn, (2.12)
C D
Therefore, it follows that
T.(s) = GAs) — AU(s). (2.13)

Lemma 2.1 U(s) has no invariant zero in CRHP.
Proof: Suppose that A is an invariant zero of IAs), then

[u-— A,

A B;FD] is not full rank, (214)

If this matrix is premultiplied by [ IO _f], then

[1 —F”/H— A, B+FD] - [AI—A B

0 I —-C D C D

Thus (2.14) implies that there exists nonzero vector
[x1 3] so that

‘][’U'A B1- ool (2.15)

[x] %3 c b
From x;B + x;D = 0, postmultiplying D7 on each

side of this equality, we obtain x3 = (. Therefore (2.15) is
reduced to

«[AI-A B} = [0 0].

Since x| is nonzero, A is an uncontrollable mode of
(A, B). However (A, B) is stabilizable, and hence A has

negative real part.
QED.

Lemma 22 T,(s) is in RH, if and only if @(s) is in RH,.

Proof: (Sufficiency) obvious.

(Necessity) Note that DDT = [ requires D is "fat” (ie.
has more colurmns than rows) and so is U(s).

Since Tofs) = GAs) — XHU(s), we can represent
T..(s) as a LFT of T(s) and €Xs),

T.(s) = KT, Q)
where
Ay i B+FD 0
s = [C(;]f _01] o |
C i D 0

With a minimal realization of €Xs), Theorem 42 in Li-



mebeer[8] implies that T,(s) has no unstable unobservable

mode and every uncontrollable mode in  T.(s) is an
invariant zero of U(s). Since UXs) has no invariant zero in
CRHP, T.(s) has no unstable uncontrollable mode. Hence
T,.(s)eRH, implies that it has no unstable mode and so
does Q(s), that is, Xs)€RH,.

QED.
From Lemma 2.2, it can be seen that we only need to
consider @Xs) in RH,.

Theorem 2.3 The family of all filters such that
| Tooll < 1 G, 3 + € is the set of all transfer matrices
from y to z in Fig 1, where @ € RH,, | Q1% < &

Proof: Note that A, is a stable matrix[5]. From (2.11)
and (212),
GAs) U(s)

= L(sI- A, (B+FD) {C(sI- A¢) (B+FD) + D}’

Il

L(sI— A)) YBBT(sI+ A M—-C") +F
+FFT(sI+ AD"(-CT)}
= L(sI- Ay {BBT+P(s[+ A{)

+PCTCP} (sI+ AD(-CN
= L(sI- Ay) N (sP+PAT+BBN(sI+ A (=CT)
= L(sI- A) (sI-A+PCTOsl+ A ™(-CT)

= —LP(sI+ AD7'CT,
which implies that GU € RHj;. Hence we have,

() U(s) , GAs?

= L [ tracd U (W)@ () GAw))dw

L [ tracd @ () G U ) ldw

() , GA U (s)>?

= 0. (2.16)
Similarly, it can be shown that
CGAs) , X)U(s)> = 0. 217
From (2.12),

2R 9@ WA 7S 0|8 B4 EFaH f UHY
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UU = { C(sI— Ay) (B+FD)+D}

(BT+DTFTY(~sI— AD7'CT+D7

= C(sI- A,) " (B+FD)
(BT+DTFTY(—sI- AD7'CcT
+ C(sI- Ay) " (B+FD)DT
+DXBT+DTFTY(—sI- AJ)7'CT +1

= C(sI—- A) "' {BBT+FF™+P(sI+ A{)
—(sI—- AP W —sI- AD7'CT + I

= O(sI- Ay { AP+PAT-PC"CP+BB"}
(=sI- AD7'cT + 1

=1 (218)

which implies that U is coinner.

Thus,
| Tooll 3 = < Tows T

= (Gs) — XNWUs), GAs) — AU(s)>
= CGA9) ,GAS> — <GL3),
QHU(8)> — CANU(s) , GAs)>
+ LA U(s) , AHU(s)>
= 163 + 13 (219
QED.

3. Decentralized H2 filtering.

In this section, we consider a decentralized filtering
problem. We partition

zZ = [A y = [yn]. @1
29 ¥

We seek to find a decentralized filter K(s) = block—
diag {K,(s), Kgn(s)} so that

Z = Ku(9y, 2z = Kp(n. (32)

while satisfying | Tel 3 < I G/ § + €
From Fig 1, it follows that

K(s) = FM,Q
= M“ + QMZI’ (33

259
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where

i

Mu _L(SI'— 1/4\0)—1F,

le C(SI— A\o)ulF + 1

We first determine whether there exists a decentralized
filler K{(s) so that T,, € RH,.

We partition
L= [g] F=I[FF,),
(34)

(8] @=1¢8

where L;, Ly, C; and C, are, respectively, g,%#,
g;Xn, pyXn and pyXn matrices.

Define
X, = —L(sI - A))7'F, (35)
Y, = C(sI— A,)'F, + [1?] (36)
X, = —Ly(sI — A,))7'F, (3.7
Y, = C(I— A)'F, + [16] (38)

Then, we have

Lemma 3.1 There exists a decentralized filter K(s) such
that T, = RH; and | Tul} < 1G5 + & if the
exact model matching problems (3.9) and (3.10) are solvable
under the constraint that (s) & RHy, | Q)% < &

X+ @Y =0 (3.9)

Xy + @(9Y, = 0 (310

Proof: Since
zp = Kyy + Kpy,,

—

z; = Kyy + Ky,

there exists a decentralized filter if and only if K;; = 0
and K, = 0. From (3.3) and (34),

260

It

K(S) M“ + QMZ]
= —[g](sf— A F Fy)

e ainmfi)

»
= [Ku KIZ].
Ky Ky
It follows that
Kp(s) = —Li(si— A)7'Fy + @
{C(sl— A\O)_‘F2+[I(32”
= X, + Qs Y,
Kn(s) = —Ly(si— A)7"'F, + @,
[C(sI— ,’4\[,)“F1+[161”
= X, + @)Y,
Hence, K;; = 0 and K, = 0 if and only if
X, + )Y, =0,

Xz + Qz(s) Yz = O
QED.

4. Decentralized Filter Design

Now we consider a practical design method for the
suggested decentralized filter. The algorithm introduced
below to design such filter utilizes results from the
literature on exact model matching problem. So we introduce
some results of exact model matching problem.

4.1 Model matching problem

The exact model matching problem (EMMP) is defined as
follows[6): Given
rankl Pl = p< m and proper stable pXg matrix 7, find
a proper stable rational matrix M such that the equation

proper rational pXm matrix P with

PM=T {4.1)

holds.

For a proper and stable solution M to exist, P and T
have to satisfy certain conditions.

Theorem 4.1 Given proper P and proper stable 77 with
rankl Pl = vanll T] = p, there exist a proper stable
solution M if and only if 7T has as its zeros all the RHP
finite zeros and all the zeros at infinity of P together with



their associated structure.

Proof: See [6].
Remark : If P is minimum phase and has no zeros at

infinity, then there always exist proper stable solutions.

Since the Theorem 4.1 does not provide a convenient and
direct way to determine whether T is appropriate, there is
a need for simple and direct conditions which will help the
designer to determine whether 7 contains the unavoidable
unstable zeros together with the appropriate structure.

Theorem 4.2 let P= ND ! be a right coprime polynomial
factorization of P, and T=NgD7' be a right coprime

polynomial factorization of T. Then, the unstable zeros
z, i=1,...,0 of P together with their structure will

appear in T if and only if

aiNT(zi) = 0, l: ].,. ,l (42)
where @; are determined from
a; Nz,) = 0. i=1,....1 (4.3)

Proof : See [9].
Remark : (42) is always equivalent to a; 7(z;) = 0 since

er T is stable, and (4.3) can be written as a;P(z) = 0

when P does not have any poles at 2.

4.2 Decentralized Filter Design

To find when there exists a decentralized filter, we
rewrite (3.9) and (3.10) as follows:

yrel = —-x7 (4.4)
vrel = —-x7 (45)

From Theorem 4.1, it can be seen that the transmission
zeroes of YIT R Y2T play an important role in determining
the existence of stable decentralized filters. Hence we first
determine where the zeroes of YT and Y7 come from.
Lemma 4.3 The invariant zerces of YT (respectively, Y]
are the uncbservable modes of {A, C\}(respectively, {A, Ch.

Proof: Note that Y, and Y7 have same invariant zeros,
since Y, and YT have same Smith-Mcmillan form.

The invariant zeros[10] of Y, are those for which

il
[0
H
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2
N
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o
o
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Al,— A, F;
_ 0
c [zl

If this matrix is premultiplied by [ ra— ] then we
»

rank [ { n+min(, p) = 7+ p,.

have,
[I,, _F AL~ A, FO2
0 -7 -C
ﬂ (2]
Al,— Ay +FC 0 1oAL—-A 0
= [0 = C, 0
¢ [Ibz [CZ] [_Im] }

Thus, the last matrix has reduced rank ( less than
n + po ) only if A is a zero of Y. Note, however, that
the A which reduces the rank of this matrix are exactly

those which reduce the rank of [/U "C_A ] which are
\

exactly the unobservable poles of {A, Ci.
QED

Since the "A” matrix of Y, is stable, the decoupling
zeros of Y, are stable [10]. Moreover, since the set of
invariant zeros is composed by the set of transmission zeros
plus some decoupling zeros{10], if some invariant zeroes of
Y, are in RHP, then this invariant zeroes must be

transmission zeros. Hence we have

Lemma 44 For k=1,2, let 2f (i=1,....0) be
RHP unobservable modes of {A, C,}. Then there exists a

decentralized filter K(s) such that T, € RH, if and
only if
XN =0, Vik (46)
where a” are determined from
at Yi(zh) = 0, A7)

and X, Y, are given by (35), (36), (37, (38).

Proof : Note that Yi(e) = [0 I] has full row
rank, which implies that YlT has right inverse. Since the
"D” matrix of Y; is [(}], Y, is biproper, and hence Y,
has no transmission zero at infinity. Similarly, YZT has full
row rank, and has no transmission zero at infinity.

Since the "A” matrix of Y, is A, , Y, is stable and
Y, has no poles at 2%, Vv i, k. 1t follows from Theorem
42 and Lemma 43 that for k=1,2, Xi has as its zeros
all the RHP finite zeros of Y7 together with their



BREF WL 46% 2% 1996%F 28

associated structure. Hence the Theorem 4.1 guarantees the
existence of €Xs) which is stable and satisfies (3.9) and
(3.10).

QED

Remark : If {A, C)} and {A, C) are detectable, then
there exists no unstable unobservable mode, hence it follows
from Lemma 44 that there exists a decentralized filter K(s)
such that 7, € RH,

Now the natural question arises @ If the conditions of
Lemma 4.4 are satisfied, how to find @(s), @(s) satisfying
(44) and (45) ? When these @(s), @,(s) have been
found, we can construct decentralized filter as in the proof
of Lemma 31, ie.

Ku(s) = —L\(sI— Ap)7'F, + Ql(s){C(sI— @0)_1F1+[({]},

ng(s) = "Lz(SI“ //4\0)_11:2 + Qz(s){C(sI- A\g)_le"‘[g]}

To answer this question, we rely on the EMMP. The
basic idea of EMMP is that Q7= —(YD . XT clearly
satisfies Y/ Q] = —X[.
construct this @,(s), so we present a algorithm to construct
@ (s) and Q,(s) by using the results from the literature of
EMMPI6). In this algorithm, right inverses are first
determined, and then @,(s) and @Q,(s) are determined, and
finally K (s) and Ku(s) are determined. Note that, in this
algorithm, the poles of the proper right inverse (¥7),; will

However it is not simple to

deonsist of 1) a set of 7, poles equal to the zeros o Y,
and 2) a set of (n—~ n,) poles arbitrarily assignable via
linear state feedback HI[11].

Decentralized Filter Design Algorithm (DFDA):

Step 1:Find an irreducible state-space realization of yT
as {A,B,C.E}, where A, B, C, and E are
nXn, nwxXm pxXn and pX m real matrices,
respectively.

Step 2:Find an m X m nonsingular matrix M such that

EM=1[I 0].
Step 3:Set [ By, By] = BM and calculate A — B,C.
Step 4: Find a matrix H such that (u# — ;z\l) eigenvalues of
A— B,C+ B,H are in the LHP, where 7, is the
number of zeros of ¥,. The existence of such H is

always guaranteed[11].
Step 5: The desired proper right inverse is

(v 59 . aw(d) . u{5S] . w[2))

262

where H was determined in step 4.
Step 6:Calculate (Y), = C,(sI-A,)"'B, + E,,.
Step 7:Calculate Q{(s) = —(¥]),.XT.
Step 8Repeat step 1 - step 7 with ¥7 instead of ¥7 to
obtain Q7 (s).
Step 9:Construct a decentralized filter :

Kiy(s) = —Li(sI- A)7'F, + Ql<s>{c<sz— AR+ [ 0’]},

Ka(9) = —Ly(sI= A9 'Fy + Qo9 {C(sl~ 20>~1Fz+[ g] }

With Lemma 4.4 and DFDA, we are ready to present our
main result in the following theorem.

Theorem 45 For given &, if one can find Q,(s) and
Q.(s) satisfying (44), (45) and ”8*” < & by DFDA,
211z

then there exists a decentralized filter such that 1T, l12.
< NGAE + &

Remark : Since we can assign arbitrarily all poles of Y,
and Y, except for unobservable modes of {A, C;} and

{A, C)) in step 4 of DFDA, we can reduce the H, norm

of €Xs) by assigning remaining (n — 7n,) poles at

appropriate places in LHP. If one cannot find @ and @,

satisfying (4.4), (45) and Hgl’l ¢ & by DFDA, then a
2lig

larger upper bound on the norm is required.
5. EXAMPLE

To illustrate the proposed decentralized filter design
procedure, we consider a following example. The system
matrices A, B, C, D and L are given as

—0.6705 —0.5410 —0.2115
A= [ —0.8705 —0.3410 —0.2115},
0.3295 —0.5410 —1.2115

.78  —-2.1 2.74
B= [1.32 —1.56 2.03],
0.43 —0.51 0.66

[ 5% 2

D=[ 0.408 —0.577 —0.707

c

I

0.789 0.611 —0.043)

Kn(s) 0

We seek to find decentralized filter K(s) =
0 Kzz(S)



satisfying | T, (s) ll; < 4.5, whereas the optimal H, norm
of the closed-loop system is

G, = 3.7821.

Since 1 Tol91Z = IGANE +1QN5 &9 = [3;8
should be constructed in DPDA such that [|1Q Il; < 2.4383.

Since the subsystem {A, C,} has unobservable unstable
mode at 02, it follows from lemma 4.3 that Y; has
transmission zero at 0.2. Indeed, we obtain from (3.6)

3.1999 —8.2818 —16.6782
A, = 12.2759 —6.6338 —11.5189 1,
1.1370 —2.1561 —5.0839
0.7213
B,Vl = [1.1%2]7
0.0413
_[—-1 2 5
Ca = [ 1 -2 —-1f
Dyl = [?]1
so that
Y7.2) = [0 01
Hence we can choose ai = 1 in (47)
From (3.5),
3.1999 —8.2818 —16.6782
Ay = [2.2759 —6.6338 —11.5189 |,
1.1370 —2.1561 —5.0839
0.7213
Byl = [11062},
0.0413
Cy=1[-1 -1 -1,
Dxl = 0'
we obtain
a} X7(0.2)=0.
Hence the lemma 44 guarantees the existence of

decentralized filters.
Using the DPDA, we can construct the decentralized filter

as
Ky (s) = 5.96s' + 805’ + 158.9s + 109.83s + 26.04

i & + 19.128' + 105.58° + 151.57s + 85.65s + 17.21
Kol = —=286s' = 31.00s° — 59.19" — 48,375 — 16.84

2 & + 13.328° + 53.895° + 79.43s° + 48.76s + 10.9

o2tF 2E Yx| 7|HE OI8E 2o EAH H THE
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In step 4 of DPDA, we have placed two nonfixed poles of
(YD, at {-06, -10} and those of (Y), at {-38,
~09714), whereas the fixed pole of (Y7), is 0.2 and that
of (Y7), is -1. Since the resulting Q(s)ll; is 24104, a
prescribed sub-optimal norm bound is satisfied.

Note that the poles of K; are {-06, -10, -06027%
i0.1704, -7.3124} and those of Ky are {-1, -38, -06027*
i0.1704, -7.3124), which implies that the proposed
decentralized filter is stable.

The simulation was performed by MATLAB with initial
conditions

21 check W:orlg .- Y:opt --R:decent
T T T T

Fig. 2 Z; estimate

21 error chack .- Yiopt -- R:decant
s T T T

5)

y
1} iy Sy /—.;_,.—,*wmrﬁ‘b\nn.f\p;‘hgl-\,v»aN- =M N
| i
R
opr/ett L
s
b N 4

1 .
' decent
g L " L ) L L L L ' '
[} 2 4 6 8 10 12 14 16 18 20
Fig. 3 Z. error
22 check W:orig .- Y:opt --R:decent
500 T T T T T
opt decent
° 4
-500
-1000
-1800
-2000 >
[ 2 4 6 8 10 12 14 16 18 20
Fig. 4 Z: estimate
22 errorcheck .- Y:opt -- R:decent
5 v 1
ob------=-2 r..‘v_hv“““v’\/—‘--\‘Nw\—-‘“m“vﬁ_‘d"
~'-1' -
5} e
. dc/l:onl 1
10 ¢ [ 3
and |
a5 ¢ <l
i
-20 ¥ pt *1
28 L L s J
2 4 6 8 10 12 14 18 18 20
Fig. 5 Z; error
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10 0
() = [—10} x(0) = [0}
10 0

where x(0) is an initial state of the filter. The optimal
estimate of z, (2 1op) and the decentralized estimate of z,
(zA]dec) are shown in Fig.2. The Fig.3 shows the optimal
error (2] — Z),y4) and the decentralized error (z; — 2 g ).
The estimates of 2y and the errors in estimate of 2, are
shown in Fig4 and Fig.5, respectively. In these comparisons,
we can see that the decentralized estimation errors decay to

zero, although the Hy-norm of the decentralized estimation

error is larger than that of optimal estimation error.
5. Conclusion

Decentralized suboptimal H, filtering has been examined.
The sufficient and necessary condition has been derived to
guarantee the existence of proposed decentralized suboptimal
H, filter. We also show that we can minimize the H,
norm of decentralized filtering error by means of minimizing
that of €Xs). A practical procedure for decentralized filter
design based on the exact model matching problem has
been proposed.
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