• Title/Summary/Keyword: Line Pipe

Search Result 500, Processing Time 0.029 seconds

Root-zone Temperature Control of Tomato Plant Cultivated in Perlite Bag during Summer Season (고온기 펄라이트 자루재배시 최적 근권온도 조절방법)

  • Kim, Sung-Eun;Kim, Young-Shik;Sim, Sang-Youn
    • Horticultural Science & Technology
    • /
    • v.29 no.2
    • /
    • pp.102-109
    • /
    • 2011
  • This research was conducted to establish efficient methods to control root-zone temperature of tomato plant when cultivated in perlite bag during the summer season. Tomato plants were grown with four selected treatments; covering irrigation pipe by aluminum insulation material (Insulate), discarding nutrient solution inside the irrigation line before each irrigation (Discard), skipping irrigation for two hours from 13:00 to 15:00 (Skip), or no treatment as a control (Non). Based on the analysis of plant development index, all plants with selected treatments grew more vigorous and vegetative in similar growth patterns. The discard treatment exhibited the best root-zone temperature control among the treatments. The discard treatment also resulted in the best root growth and above-ground growth, followed by skip, Insulate and Non. The total yields were obtained by the order of Insulate, Discard, Non and Skip. However the marketable yield was obtained by the order of Discard, Insulate, Skip and Non. The net incomes treated with Discard and Insulate were 9,687,600 and 9,396,000 Korean won per hectare, respectively, exhibiting higher incomes than that of Non. Therefore, it was concluded that insulation of the irrigation pipe and discarding nutrient solution inside the pipe before each irrigation were the most desirable and economical methods in terms of costs and yields.

A Case Study on the TEMAZ Explosion Accident in Semiconductor Process (반도체 공정에서 TEMAZ폭발사고 사례연구)

  • Yang, Won-Baek;Rhim, Jong-Kuk;Hong, Seong-Min
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.6
    • /
    • pp.52-60
    • /
    • 2017
  • In diffusion process exhaust line during semiconductor manufacturing process, In order to improve the transportation efficiency in the piping by removing "The reaction by-product, $ZrO_2$ and The unreacted material, TEMAZ, TMA, $O_3$, etc" and "Powder being deposited", the piping temperature was raised to $80^{\circ}C$ or more by using the heater jacket, and the bellows at the rear end of the vacuum pump ruptured. So conducted a case study and try to prevent the similar accidents from occurring through case studies. The causes of the accident were analyzed as follows: the inflow of outside air due to the generation of a gap on the suction side of the vacuum pump and heating the pipe with the heater jacket resulted in the overpressure in the pipe due to the volumetric expansion of the gas generated by decomposition of the unreacted TEMAZ, It can be assumed that the most vulnerable bellows of the piping has been ruptured. In order to prevent such accidents, This study is aimed to identify the cause of pipeline rupture accident and to establish safety measures for the prevention of similar accidents by evaluating physical hazards of TEMAZ, which is assumed to be the cause of pipe rupture accident.

Research on Improving Quality Management for Underground Space Integration Map - Focusing on pipe-type underground facilities - (지하공간통합지도 품질관리 개선방안 연구 - 관로형 지하시설물을 중심으로 -)

  • Bae, Sang-Keun;Kim, Sang-Min;Yoo, Eun-Jin
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.2
    • /
    • pp.221-235
    • /
    • 2020
  • The development and utilization of underground spaces are increasing as the use of land based on ground surface became limited due to rapid urbanization triggered by population growth and industrialization. Despite its merit of efficient use of limited land and space, it may contribute to occurrence of various disasters such as sinkholes and damage to underground facilities. After the sinkholes formed and occurred across the country in 2014, there has been an effort to establish Underground Space Integration Map containing 15 types of underground information. Still, there is an increasing demand to improve the quality of underground information stemmed from continuation of such events including the rupture of the hot water pipe in Goyang-si and the fire in the KT site in Ahyeon-dong, Seoul. Hereby, with the aim to improve the quality of Underground Space Integration Map, this study analyzes quality standards, regulations, and guidelines related to spatial data to improve quality inspection standards and methods included in the production rules for the Underground Space Integration Map. In particular, it suggests improvement plan for data quality management for pipe-type underground facilities, known as lifelines, which are essential part of daily life of the citizens, and the largest cause for accidents according to 15 types of underground information managed through the Underground Space Integration Map.

A Study on the Buckling Stability due to Lateral Impact of Gas Pipe Installed on the Sea-bed (해저면에 설치된 가스관의 외부충격에 의한 좌굴 안전성 검토)

  • Park, Joo-Shin;Yi, Myung-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.414-421
    • /
    • 2022
  • Subsea oil and gas exploration is increasingly moving into deeper water depths, and typically, subsea pipelines operate under high pressure and temperature conditions. Owing to the difference in these components, the axial force in the pipe is accumulated. When a pipeline is operated at a high internal pressure and temperature, it will attempt to expand and contract for differential temperature changes. Typically, the line is not free to move because of the plane strain constraints in the longitudinal direction and soil friction effects. For a positive differential temperature, it will be subjected to an axial compressive load, and when this load reaches a certain critical value, the pipe may experience vertical (upheaval buckling) or lateral (snaking buckling) movements that can jeopardize the structural integrity of the pipeline. In these circumstances, the pipeline behavior should be evaluated to ensure the pipeline structural integrity during operation in those demanding loading conditions. Performing this analysis, the correct mitigation measures for thermal buckling can be considered either by accepting bar buckling but preventing the development of excessive bending moment or by preventing any occurrence of bending.

Analysis of Vapor Compression Refrigeration Cycle Performance Depending on Different Joining Method of Non-adiabatic Capillary Tube (비단열 모세관 접합방법이 증기압축식 냉동사이클 성능에 미치는 영향 해석)

  • Yi, Dae-Yong;Park, Sang-Goo;Kim, Hyun-Jung;Jeong, Ji-Hawn
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1144-1151
    • /
    • 2009
  • Refrigeration systems can be incorporated with non-adiabatic capillary tubes to improve their efficiency. The non-adiabatic capillary tube is constructed by joining the capillary tube with suction pipe to allow heat transfer between them, which is called capillary tube-suction line heat exchanger(SLHX). There are various joining methods and they may influence the characteristics of the refrigeration cycle. The present work aims to analyze the effect of widely-used two joining methods on the refrigeration cycle. The results show that soldered SLHX has much less thermal resistance than tapered SLHX but slightly outperforms in terms of coefficient of performance(COP) and cooling capacity. The soldered SLHX increased COP and cooling capacity of a refrigerator by 5.09% and 14.77% while the tapered SLHX did by 5.05% and 14.75%, respectively.

A Study on the System Integrity of Gas Pipeline by High Voltage Power Line in Submarine Tunnel (절점망 해석프로그램을 이용한 해저터널 내 고전압 전력케이블에 의한 가스배관의 안전성 평가 연구)

  • Bae Jeong-Hyo,;Ha Tae-Hyun,;Lee Hyun-Goo,;Kim Dae-Kyeong,
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.4 s.16
    • /
    • pp.21-26
    • /
    • 2001
  • Because of the continuous growth of energy consumption, and also tile tendency to site power lines and pipelines along the same routes, the close proximity of high voltage structures and metallic pipelines has become more and more frequent. Recently, the results of assessment about a system integrity are needed in korea also when a gas pipeline is running parallel with high voltage power line in same submarine tunnel, Therefore, we analyze the system integrity(AC corrosion of pipe, melting of pipeline coating, safety of insulation flange, especially cathodic protection system which are rectifier and CI(cathodic Isolator)) resulting from the influence of high voltage power system.

  • PDF

A Study on the Comparison between an Optical Fiber and a Thermal Sensor Cable for Temperature Monitoring (온도 모니터링을 위한 광섬유 센서와 온도센서 배열 케이블의 비교 연구)

  • Kim, Jung-Yul;Kim, Yoo-Sung;Song, Yoon-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1100-1109
    • /
    • 2006
  • In this study, two different technologies which can measure temperature simultaneously at many points are introduced. One is to use a thermal sensor cable that is comprised of addressable thermal sensors connected in parallel within a single cable. The other is to use an optic fiber with Distributed Temperature Sensing (DTS) system. The difference between two technologies can be summarized as follows. A thermal sensor cable has a concept of 'point sensing' that can measure temperature at accurate position of a thermal sensor. So the accuracy and resolution of temperature measurement are up to the ability of the thermal sensor. Whereas optic fiber sensor has a concept of 'distributed sensing' because temperature is measured by ratio of Stokes and anti-Stokes component intensities of Raman backscatter that is generated when laser pulse travels along an optic fiber. It's resolution is determined by measuring distance, measuring time and spatial resolution. The purpose of this study is that application targets of two temperature measurement techniques are checked in technical and economical phases by examining the strength and weakness of them. Considering the functions and characteristics of two techniques, the thermal sensor cable will be suitable to apply to the assessment of groundwater flow, geothermal distribution and grouting efficiency within 300m distance. It is expected that the optic fiber sensor can be widely utilized at various fields (for example: pipe line inspection, tunnel fire detection, power line monitoring etc.) which need an information of temperature distribution over relatively long distance.

  • PDF

Numerical Analysis on the Characteristics of Supersonic Steam Jet Impingement Load (초음속 증기제트의 충돌하중 특성에 대한 수치해석 연구)

  • Oh, Se-Hong;Choi, Dae Kyung;Park, Won Man;Kim, Won Tae;Chang, Yoon-Suk;Choi, Choengryul
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.2
    • /
    • pp.1-10
    • /
    • 2018
  • Structures, systems and components of nuclear power plants should be able to maintain safety even in the event of design-basis accidents such as high-energy line breaks. The high-pressure steam jet ejected from the broken pipe may cause damage to the adjacent structures. The ANSI/ANS 58.2 code has been adopted as a technical standard for evaluating the jet impingement load. Recently, the U.S. NRC pointed out the non-conservativeness of the ANSI/ANS 58.2, because it does not take into account the blast wave effect, dynamic behavior of the jet, and oversimplifies the shape and load characteristics of the supersonic steam jet. Therefore, it is necessary to improve the evaluation method for the high-energy line break accident. In order to evaluate the behavior of supersonic steam jet, an appropriate numerical analysis technique considering compressible flow effect is needed. In this study, numerical analysis methodology for evaluating supersonic jet impingement load was developed and verified. In addition, the conservativeness of the ANSI/ANS 58.2 model was investigated using the numerical analysis methodology. It is estimated that the ANSI jet model does not sufficiently reflect the physical behavior of under-expanded supersonic steam jet and evaluates the jet impingement load lower than CFD analysis result at certain positions.

Effect of $H_2S$ Partial Pressure and pH of Test Solution on Hydrogen Induced Cracking of High Strength Low Alloy Steels

  • Kim, Wan Keun;Koh, Seong Ung;Kim, Kyoo Young;Yang, Boo Young;Jung, Hwan Kyo
    • Corrosion Science and Technology
    • /
    • v.4 no.6
    • /
    • pp.236-241
    • /
    • 2005
  • Hydrogen induced cracking (HIC) is one of the hydrogen degradation phenomena of linepipe steels caused by $H_2S$ gas in the crude oil or natural gas. However, NACE TM0284-96 standard HIC test method is hard to satisfy the steel requirements for sour service application since it uses more severe environmental conditions than actual conditions. Therefore, in order to use steels effectively, it is required to evaluate HIC resistance of steels in the practical range of environmental severity. In this study, HIC resistance of two high strength low alloy (HSLA) steels being used as line pipe steels was evaluated in various test solutions with different $H_2S$ pressures and pH values. The results showed that the key parameter affecting crack area ratio (CAR) is $H_2S$ partial pressure of test solution when the pH value of test solution is not over 4. Hydrogen diffusivity was not a constant value, but it was rather affected by the hydrogen ion concentration (pH value) in the solution.

Conceptual Design of Oil Spill Protection Robot (원유유출 방재로봇의 컨셉디자인)

  • Kim, Ji-Hoon;Kim, Myung-Suk
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.4
    • /
    • pp.345-350
    • /
    • 2008
  • This study aims to propose the concept design of oil spill protection robot which can rapidly intervene to control the oil spillage situation at the sea. Taking into account the fact that a huge amount of oil is transported trans-continentally by oil tanker, none of industrialized countries are completely safe from the marine oil spill which results in social, economical and ecological damages to their communities. The employment of double hull-oil tanker, pipe line transporting can be most safe way. Yet complete prevention of oil spill is probably not realistic. Accordingly the alternative solution to control marine oil spill and minimize the damages caused by the incident using intelligent robot technology based on swarm control method is proposed. The main features of oil spill protection(OSP) robot is explained via following three perspectives. Firstly, from functional point of view, OSP robot system safely and efficiently replaces oil boom installation manually conducted by human workers with intelligent robot technology based on swarm control theory. For second, its modular architecture brings efficient storage of main components including oil boom and facilitates maintenance. For the last, its geometric form and shape enables whole system to be installed to helicopter, boat or oil tanker itself with ease and to rapidly deploy the units to the oil spill area.

  • PDF