DOI QR코드

DOI QR Code

A Study on the Buckling Stability due to Lateral Impact of Gas Pipe Installed on the Sea-bed

해저면에 설치된 가스관의 외부충격에 의한 좌굴 안전성 검토

  • Park, Joo-Shin (Ship and Offshore Research Institutes, Samsung heavy industries) ;
  • Yi, Myung-Su (Department of Naval Architecture and Ocean Engineering, Chosun University)
  • 박주신 (삼성중공업 조선해양연구소) ;
  • 이명수 (조선대학교 선박해양공학과)
  • Received : 2022.03.29
  • Accepted : 2022.04.27
  • Published : 2022.04.30

Abstract

Subsea oil and gas exploration is increasingly moving into deeper water depths, and typically, subsea pipelines operate under high pressure and temperature conditions. Owing to the difference in these components, the axial force in the pipe is accumulated. When a pipeline is operated at a high internal pressure and temperature, it will attempt to expand and contract for differential temperature changes. Typically, the line is not free to move because of the plane strain constraints in the longitudinal direction and soil friction effects. For a positive differential temperature, it will be subjected to an axial compressive load, and when this load reaches a certain critical value, the pipe may experience vertical (upheaval buckling) or lateral (snaking buckling) movements that can jeopardize the structural integrity of the pipeline. In these circumstances, the pipeline behavior should be evaluated to ensure the pipeline structural integrity during operation in those demanding loading conditions. Performing this analysis, the correct mitigation measures for thermal buckling can be considered either by accepting bar buckling but preventing the development of excessive bending moment or by preventing any occurrence of bending.

해저 석유와 가스 탐사가 점점 더 깊은 수심으로 진행되고 있으며, 해저 파이프라인은 고압 및 고온 조건에서 작동하는 것이 일반적이다. 온도 및 압력 차이로 인하여 파이프 축 방향 힘이 축적되는 현상이 있다. 이러한 현상은 파이프라인을 구속하는 해저면 효과 때문에 파이프라인은 횡 좌굴이 발생하게 된다. 온도가 증가하는 경우 축 방향의 압축 하중이 가해지며 이 하중이 임계 수준에 도달하면 파이프가 수직방향으로 움직이게 된다. 또는 파이프라인의 구조적 완전성을 위태롭게 할 수 있는 횡 방향 좌굴이 발생하는 상황에서, 작동 중 파이프라인의 구조적 안전함을 보장하기 위해 파이프라인의 상세 구조 강도평가가 수행되어야 한다. 본 연구에서는 해저면의 마찰 효과 및 재료의 열 수축/팽창을 고려한 비선형 구조해석을 상용 유한요소해석 프로그램인 ANSYS를 활용하여 검토하였으며, 외부충격에 의한 횡 방향 좌굴 안전성을 분석하였다. 본 연구의 결과를 통하여 수치 해석적 단순화된 분석 모델을 통하여 해저면의 효과를 고려한 조건에서의 실제 파이프라인의 붕괴 조건을 예측할 수 있다.

Keywords

References

  1. ANSYS Multiphysics User's Manual(2016), Introduction of nonlinear analysis and it's application of plate buckling and ultimate strength, Vol. 3, pp. 85-100.
  2. Chee, J., A. Walker, and D. White(2018), Controlling lateral buckling of subsea pipeline with sinusoidal shape pre-deformation, Ocean Engineering, Vol. 151, pp. 170-190. https://doi.org/10.1016/j.oceaneng.2018.01.024
  3. DET NORSKE VERITAS(DNV)(2007), Global Buckling of Submarine Pipelines, Recommended Practice DNV-RP-F110, Sec. 5, pp. 13-31.
  4. DET NORSKE VERITAS(DNV)(2012), Submarine Pipeline Systems, Offshore Standard, DNV-OS-F101, Sec. 5, pp. 63-77.
  5. DET NORSKE VERITAS(DNV)(2014), Interference between Trawl Gear and Pipelines, Recommended Practice DNV-RP-F111, Sec. 4, pp. 26-30.
  6. Sharifi, S. M. H., A. Taheri, and M. B. Faraji Pool(2019), Assessment of Offshore Pipeline Reliability against Lateral Buckling, International Journal of Maritime Technology, Vol. 12, pp. 41-48. https://doi.org/10.29252/ijmt.12.41
  7. The American Society of Mechanical Engineers(ASME)(2012), Gas Transmission and Distribution Piping Systems, ASME B31.8, New York.
  8. Taghizadeh Edmollaii, S. and P. Edalat(2017), Accidental Limit State of Submarine Pipeline: Trawl Gears Pull-Over Loads and Effect of Free Span, International Journal of Maritime Technology, Vol. 8, pp. 47-58. https://doi.org/10.29252/ijmt.8.47
  9. Vosooghi, N., A. Ivanovic, and S. Sriramula(2021), Rogue Lateral Buckle Initiation at Subsea Pipelines, Applied Ocean Research, Vol. 117, 102899. https://doi.org/10.1016/j.apor.2021.102899
  10. Wang, Z., Z. Chen, H. Liu, and Z. Zhang(2017a), Numerical study on lateral buckling of pipelines with imperfections with imperfection and sleeper, Applied Ocean Research, Vol. 68, pp. 103-113. https://doi.org/10.1016/j.apor.2017.08.010
  11. Wang, Z., Y. Tang, L. Zhao, and C. Wang(2017b), Analytical solution for controlled lateral buckling of unburied subsea pipelines, Ocean Engineering, Vol. 146, pp. 140-150. https://doi.org/10.1016/j.oceaneng.2017.09.035
  12. Zhu, J., M. M. Attard, and D. C. Kellermann(2015), In-plane nonlinear localized lateral buckling of straight pipelines, Engineering Structures, Vol. 103, pp. 37-52. https://doi.org/10.1016/j.engstruct.2015.08.036