DOI QR코드

DOI QR Code

비단열 모세관 접합방법이 증기압축식 냉동사이클 성능에 미치는 영향 해석

Analysis of Vapor Compression Refrigeration Cycle Performance Depending on Different Joining Method of Non-adiabatic Capillary Tube

  • 발행 : 2009.11.30

초록

냉동기는 비단열모세관을 채택하여 사용함으로써 사이클의 효율을 향상시킬 수 있다. 비단열모세관은 모세관과 흡입관을 접합함으로써 둘 사이에 열전달이 일어날 수 있도록 한 장치로서 SLHX 라고 부른다. 두 관을 접합하는 방법은 다양하며 이는 사이클의 성능에 영향을 미칠 수 있다. 본 연구에서는 가장 널리 사용되는 두 가지 접합방법이 냉동사이클에 미치는 영향을 해석하였다. 실험결과 용접형 SLHX의 열저항이 테이프형 SLHX의 열저항 보다 크게 작은 것으로 나타났다. 이를 이용한 사이클해석 결과 용접형 SLHX는 COP 와 냉동능력을 5.09%와 14.77% 향상시키고 테이프형 SLHX는 각각 5.05%와 14.75% 향상시켜 둘 사이의 차이는 매우 작은 것으로 나타났다.

Refrigeration systems can be incorporated with non-adiabatic capillary tubes to improve their efficiency. The non-adiabatic capillary tube is constructed by joining the capillary tube with suction pipe to allow heat transfer between them, which is called capillary tube-suction line heat exchanger(SLHX). There are various joining methods and they may influence the characteristics of the refrigeration cycle. The present work aims to analyze the effect of widely-used two joining methods on the refrigeration cycle. The results show that soldered SLHX has much less thermal resistance than tapered SLHX but slightly outperforms in terms of coefficient of performance(COP) and cooling capacity. The soldered SLHX increased COP and cooling capacity of a refrigerator by 5.09% and 14.77% while the tapered SLHX did by 5.05% and 14.75%, respectively.

키워드

참고문헌

  1. K. H. An, J. H. Lee, I. W. Lee and I. S. Lee, "Performance prediction of reciprocating compressor", Proceedings of the KSME, pp. 1506-1511, 2002
  2. P. A. Domanski, "Theoretical evaluation of the vapor compression cycle with a liquid-line/suction-line heat exchanger, economizer, and ejector", NIST Report, NISTIR5606,1995
  3. E. Dirik, C. Inan and M. Y. Tanes, "Numerical and experimental studies on adiabatic and non-adiabatic capillary tubes with R-134a", Int. Refrigeration Conference at Purdue, West Lafayette, Indiana, USA, 1994
  4. M. M. Mezavila and C. Melo, "CAPHEAT: A homogeneous model to simulate flow through non-adiabatic capillary tubes", Int. Refrigeration Conference at Purdue, West Lafayette, Indiana, USA, 1996
  5. B. Xu and P. K. Bansal, "Nonadiabatic capillary tube flow: A homogeneous model and process description", Applied Thermal Engineering, vol. 22, pp. 1801-1819, 2002 https://doi.org/10.1016/S1359-4311(02)00110-2
  6. S. Wongwises and M, A. Suchatawut, "Simulation for predicting the refrigerant flow characteristics including metastable region in adiabatic capillary tubes", Internal Journal of Energy Research, vol. 27, pp. 93-109, 2003 https://doi.org/10.1002/er.860
  7. O. Garcia-Valladares, "Numerical simulation of non-adiabatic capillary tubes considering metastable region. Part I: Mathematical formulation a numerical model", International Journal of Refrigeration, vol. 30. pp. 642-653, 2007 https://doi.org/10.1016/j.ijrefrig.2006.08.015
  8. M. K. Khan, R. Kumar and P. K. Sahoo, "Experimental and Numerical Investigation of R-134a Flow through a Lateral Type Diabatic Capillary Tube", HVAC&R Resarch, vol. 14, pp.871-905, 2008 https://doi.org/10.1080/10789669.2008.10391045
  9. V. Gneilinski, "New equation for heat and mass transfer in turbulent pipe and channel flow", Int. Journal of Chemical Engineering, vol. 16, pp. 359-368, 1976
  10. S. G. Park, K. D. Son, J. H. Jeong and L. S. Kim, "Simulation of the Refrigeration Cycle Equipped with a Non-Adiabatic Capillary Tube", Proceedings of the SAREK, vol. 21, No. 3, pp.131-139, 2009