• Title/Summary/Keyword: Limit of detection(LOD)

Search Result 297, Processing Time 0.021 seconds

Analysis and Survey for Contamination of Deoxynivalenol and Zearalenone in Feed by High Performance Liquid Chromatography (HPLC를 이용한 사료 중 Deoxynivalenol, Zearalenone의 분석과 오염도 조사)

  • Kim, Dong-Ho;Choi, Kyu-Il;Hong, Kyung-Suk;Kim, Hyun-Jung;Song, Yeong-Jin;Gang, Seung-Hun;Jang, Han-Sub;Cho, Hyun-Jung;Han, Gye-Su
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.3
    • /
    • pp.214-221
    • /
    • 2011
  • Deoxynivalenol (DON) and zearalenone (ZEN) are mainly contaminated mycotoxins in feeds. The study was carried out to analyze and survey the contamination of DON and ZEN in one hundred thirteen samples of feeds. After cleaning all samples with immunoaffinity column, the mycotoxins were analysed by using high performance liquid chromatography/fluorescence with diode array detector (HPLC/FLD with DAD). The average recoveries of DON were 88.76 and 95.40% at the levels of 200 and 1,000 ${\mu}g/kg$ and 87.09 and 98.40% of ZEN were recovered at the levels of 100 and 500 ${\mu}g/kg$, respectively. The limit of detection (LOD) were 6.0 and 3.0 ${\mu}g/kg$ for DON and ZEN, respectively. The average concentrations of DON were 372.1, 324.0 and 990.9 ${\mu}g/kg$ in chicken, pig and cattle feed, respectively. Those of ZEN were 76.1, 43.7 and 196.2 ${\mu}g/kg$ for them, individually.

Monitoring of Methanol Levels in Commercial Detergents and Rinse Aids (시판 세척제 및 헹굼보조제 중 메탄올 함량 모니터링)

  • Park, Na-youn;Yang, Heedeuk;Lee, Jeoungsun;Kim, Junghoan;Park, Se-Jong;Choi, Jae Chun;Kim, MeeKyung;Kho, Younglim
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.3
    • /
    • pp.263-268
    • /
    • 2019
  • Methanol is a toxic alcohol used in various products such as antifreeze, detergent, disinfectant and industrial solvent. In the human body, methanol is oxidized to formaldehyde and formic acid, which can lead to metabolic acidosis, optic nerve impairment, and death. In this study, the methanol levels in detergents (n=191) and rinse aids (n=13) were analyzed by gas chromatography-headspace-mass spectrometry (GC-HS-MS). Limit of detection was 1.09 mg/kg, accuracy and precision were 91.1-97.9% and <10%, and it was suitable for quantitative analysis. This analysis method was simple and fast with a higher recovery rate than the conventional MFDS (Ministry of Food and Drug Safety) method of diluting the sample in water and putting it in a headspace vial.

Trace element analysis of korean car windshield using LA-ICP-MS (LA-ICP-MS를 이용한 한국 자동차 유리의 미량원소 분석)

  • Min, Ji-Sook;Choi, Man-Sik;Heo, Sang-Cheol;Kim, Jae-Kyun
    • Analytical Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.235-246
    • /
    • 2009
  • The analyses of minor and trace elements in glass debris were performed using LA-ICP-MS in order to identify manufacturers using real commercial samples. At first, a calibration curve was made using standard glass samples of NIST 610, 612, 614 and 616. $^{29}Si$ was used as an internal standard, and the ratios of metal/Si for each metal were compared with their concentrations. Based on elements in each sample and standard materials, 24 metals were quantified and the LOD in analysis, according to the blank sample, was in the range of 0.11 mg/kg (Ti)-4.91 mg/kg (Ca). Eleven samples from two manufacturers were collected and five sub-samples were taken from each sample for analysis. 15 elements (Co, Ce, Ca, Mn, Sr, Ba, Li, Rb, U, La, Th, Na, Al, Zr and Hf) were selected to identify manufacturers because some elements (Cu, Cr, Cd and Ni) were below the detection limit and some elements (Ti, Pr, Mg, Nb, Nd) were absent in the analysis of standards and others (Pb and Sn) had a problem of homogeneity. The attempts to identify manufacturers and the manufacturing period were performed through a triangular diagram. In the manufacturer discrimination by discriminant analysis, a canonical discriminant function was made based on Mn, Ce and Rb, and each sample could be identified.

Monitoring of Butyltin Compounds in PVC Food Packaging - Determination of Butyltin Compounds in PVC Wrap and Gasket for Food Packaging by GC/MS (식품용 염화비닐수지제 기구 및 용기.포장 중 부틸주석화합물의 모니터링 - GC/MS를 이용한 염화비닐수지제 식품용 랩 및 가스킷 재질 중 부틸주석화합물 잔류량 분석)

  • Sung, Jun-Hyun;Yoon, Hae-Jung;Choi, Hyun-Cheol;Jeon, Dae-Hoon;Eom, Mi-Ok;Kim, Hyung-Il;Park, Na-Young;Lee, Eun-Joon;Lee, Young-Ja
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.715-720
    • /
    • 2007
  • The levels of butyltin compounds in poly(vinyl chloride) (PVC) food packaging using gas chromatography/mass spectrometry (GC/MS) were monitored. The analytical method, involving the ethylation with sodium tetraethylborate, was found to be selective and sensitive for mono-n-butyltin (MBT), di-n-butyltin (DBT), and tri-n-butyltin (TBT), validated by a $0.005\;{\mu}g/mL$ limit of detection (LOD), an $R^2>0.999$ for linearity, and >90% of recovery, respectively. Finally, none of the commercial food wraps and gaskets showed detectable levels of butyltin compounds.

Optimization of Analytical Method for Annatto Pigment in Foods (식품 중 안나토색소 분석법 최적화 연구)

  • Lee, Jiyeon;Park, Juhee;Lee, Jihyun;Suh, Hee-Jae;Lee, Chan
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.4
    • /
    • pp.298-309
    • /
    • 2021
  • In this study we sought to develop a simultaneous analysis method for cis-bixin and cis-norbixin, the main components, to detect annatto pigment in food. To establish the optimal test method, the HPLC analysis methods of the European Food Safety Authority (EFSA), Japan's Ministry of Health, Labor and Welfare (MHLW), and National Institute of Food and Drug Safety Evaluation (NIFDS) were compared and reviewed. In addition, a new pretreatment method applicable to various foods was developed after selecting conditions for simultaneous high-performance liquid chromatography (HPLC) analysis in consideration of linearity, limit of detection (LOD), limit of quantification (LOQ), and analysis time. The HPLC analysis method of NIFDS showed the best linearity (R2 ≥ 0.999), exhibiting low detection and quantification limits for cis-norbixin and cis-bixin as 0.03, 0.05 ㎍/mL, and 0.097, 0.16 ㎍/mL, respectively. All previously reported pretreatment methods had limitations in various food applications. However, the new pretreatment method showed a high recovery rate for all three main food groups of fish meat and meat products, processed cheese and beverages. This method showed an excellent simultaneous recovery rate of 98% or more for cis-bixin and cis-norbixin. The HPLC analysis method with a new pretreatment method showed high linearity with a coefficient of determination (R2) of 1 for both substances, and the accuracy (recovery rate) and precision (%RSD) were 98% and between 0.4-7.9, respectively. From this result, the optimized analytical method was considered to be very suitable for the simultaneous analysis of cis-bixin and cis-norbixin, two main components of annatto pigment in food.

The Analysis and Migration of Bisphenol A Related Compounds from Metal Food Cans (식품용 금속 캔으로부터 비스페놀 A 관련 물질들의 분석 및 이행 연구)

  • Park, Se-Jong;Park, So-Ra;Choi, Jae Chun;Kim, MeeKyung
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.4
    • /
    • pp.329-335
    • /
    • 2017
  • Analysis method was presented for the simultaneous determination of nine bisphenol A related compounds such as bisphenol A (BPA), phenol, p-tert-butylphenol, bisphenol A diglycidyl ether (BADGE), $BADGE{\cdot}2H_2O$, $BADGE{\cdot}2HCl$, bisphenol F diglycidyl ether (BFDGE), $BFDGE{\cdot}2H_2O$ and $BFDGE{\cdot}2HCl$ migrated from inner coatings of metal food cans by high performance liquid chromatography (HPLC) with fluorescence detection. The method was validated by examining the linearity of calibration curve, the limit of detection (LOD), the limit of quantification (LOQ), recovery and uncertainty. The migration tests of nine BPA related compounds were carried out with four food simulants; deionized water (DW), 4% acetic acid, 50% ethanol and n-heptane. There was not any compound detected in DW, 4% acetic acid and 50% ethanol at $60^{\circ}C$ for 30 min and n-heptane at $25^{\circ}C$ for 60 min. BPA and phenol were migrated into 4% acetic acid and 50% ethanol at $95^{\circ}C$ for 30 min. The concentrations were ranged from 0 to $10.77{\mu}g/L$ of BPA and from 0 to $2.35{\mu}g/L$ of phenol. Canned foodstuffs mostly have long-term shelf life. We investigated migration of nine BPA related compounds according to the variation in storage periods (0~90 days) and temperatures (4, 25 and $60^{\circ}C$). All compounds were not founded during 90 days at $4^{\circ}C$ and $25^{\circ}C$, respectively. However BPA and $BADGE{\cdot}2H_2O$ were founded in DW and 4% acetic acid at $60^{\circ}C$. The migration levels of BPA and $BADGE{\cdot}2H_2O$ were close to the value of LOQ, respectively and did not change significantly as storage period. It was founded from results that the migration of BPA related compounds from metal food cans was controlled to a safe level.

Development and Validation of Analytical Method and Antioxidant Effect for Berberine and Palmatine in P.amurense (황백의 지표성분 berberine과 palmatine의 분석법 개발과 검증 및 항산화 효능 평가)

  • Jang, Gill-Woong;Choi, Sun-Il;Han, Xionggao;Men, Xiao;Kwon, Hee-Yeon;Choi, Ye-Eun;Park, Byung-Woo;Kim, Jeong-Jin;Lee, Ok-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.6
    • /
    • pp.544-551
    • /
    • 2020
  • The aim of this study was to develop and validate a simultaneous analytical method for berberine and palmatine, which are representative substances of Phellodendron amurense, and to evaluate the antioxidant activity. We evaluated the specificity, linearity, precision, accuracy, limit of detection (LOD), and limit of quantification (LOQ) of analytical methods for berberine and palmatine using high-performance liquid chromatography. Our result showed that the correlation coefficients of the calibration curve for berberine and palmatine exhibited 0.9999. The LODs for berberine and palmatine were 0.32 to 0.35 µg/mL and the LOQs were 0.97 to 1.06 µg/mL, respectively. The inter-day and intra-day precision values for berberine and palmatine were from 0.12 to 1.93 and 0.19 to 2.89%, respectively. The inter-day and intra-day accuracies were 98.43-101.45% and 92.39-100.60%, respectively. In addition, the simultaneous analytical method was validated for the detection of berberine and palmatine. Moreover, we conducted FRAP and NaNO2 scavenging activity assays to measure the antioxidant activities of berberine and palmatine, and both showed antioxidant activity. These results suggest that P.amurense could be a potential natural resource for antioxidant activity and that the efficacy can be confirmed by investigating the content of the berberine and palmatine.

Improvement of analytical method for pymetrozine in citrus fruits (감귤류 과일의 피메트로진 정량을 위한 분석법 개선)

  • Jeon, Jun-Ho;Chun, Su-Hyun;Kim, Min-Hyuk;Kim, Mi-Ok;Lee, Kwang-Won
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.4
    • /
    • pp.316-323
    • /
    • 2019
  • It is difficult to analyze pymetrozine in citrus fruits using the hydromatrix method because of its low efficiency of purification and overlap of matrix and pymetrozine peaks. Liquid-liquid extraction can analyze pymetrozine in citrus fruits using dichloromethane. Since low pH interferes with the extraction of pymetrozine, the extracts of citrus fruits were maintained over pH 7.0 by adding borax buffer and 1 N NaOH in the improved method. According to the improved method, citrus fruits (such as lemon, lime, orange, tangerine, and grapefruit) were extracted and purified for HPLC-photo diode array analysis. The results of validation were as follows: $4.360{\mu}g/kg$ of limit of detection, $14.533{\mu}g/kg$ of limit of quantitation, and 0.007 mg/kg of method quantitative limit. Citrus fruits spiked with pymetrozine showed a recovery range from 71.8 to 83.7% and a coefficient of variation below 6%. Thus, the improved method can efficiently analyze pymetrozine in citrus fruits.

Determination of Mycotoxins in Agricultural Products Used for Food and Medicine Using Liquid Chromatography Triple Quadrupole Mass Spectrometry and Their Risk Assessment (LC-MS/MS를 이용한 식·약 공용 농산물의 곰팡이독소 분석 및 위해평가)

  • Choi, Su-Jeong;Ko, Suk-Kyung;Park, Young-Ae;Jung, Sam-Ju;Choi, Eun-Jung;Kim, Hee-sun;Kim, Eun-Jung;Hwang, In-Sook;Shin, Gi-Young;Yu, In-Sil;Shin, Yong-Seung
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.1
    • /
    • pp.24-33
    • /
    • 2021
  • For this study, we surveyed concentrations of 8 mycotoxins (aflatoxin B1, B2, G1, G2, ochratoxin A, fumonisin B1, B2 and zearalenone) in agricultural products used for food and medicine by liquid chromatography-tandem mass spectrometry and conducted a risk assessment. Samples were collected at the Yangnyeong Market in Seoul, Korea, between January and November 2019. Mycotoxins were extracted from these samples by adding 0.1% formic acid in 50% acetonitrile and cleaned up by using an ISOLUTE Myco cartridge. The method was validated by assessing its matrix effects, linearity, limit of detection (LOD), limit of quantification (LOQ), recovery and precision using four representative matrices. Matrix-matched standard calibration was used for quantification and the calibration curves of all analytes showed good linearity (r2>0.9999). LODs and LOQs were in the range of 0.02-0.11 ㎍/kg and 0.06-0.26 ㎍/kg, respectively. Sample recoveries were from 81.2 to 118.7% and relative standard deviations lower than 8.90%. The method developed in this study was applied to analyze a total of 187 samples, and aflatoxin B1 was detected at the range of 1.18-7.29 ㎍/kg (below the maximum allowable limit set by the Ministry of Food and Drug Safety, MFDS), whereas aflatoxin B2, G1 and G2 were not detected. Mycotoxins that are not regulated presently in Korea were also detected: fumonisin (0.84-14.25 ㎍/kg), ochratoxin A (0.76-17.42 ㎍/kg), and zearalenone (1.73-15.96 ㎍/kg). Risk assessment was evaluated by using estimated daily intake (EDI) and specific guideline values. These results indicate that the overall exposure level of Koreans to mycotoxins due to the intake of agricultural products used for food and medicine is unlikely to be a major risk factor for their health.

Development and Validation of an Analytical Method for Determination of Fungicide Benzovindiflupyr in Agricultural Commodities Using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 살균제 벤조빈디플루피르의 잔류시험법 개발 및 검증)

  • Lim, Seung-Hee;Do, Jung-Ah;Park, Shin-Min;Pak, Won-Min;Yoon, Ji Hye;Kim, Ji Young;Chang, Moon-Ik
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.4
    • /
    • pp.298-305
    • /
    • 2017
  • Benzovindiflupyr is a new pyrazole carboxamide fungicide that inhibits succinate dehydrogenase of mitochondrial respiratory chain. This study was carried out to develop an analytical method for the determination of benzovindiflupyr residues in agricultural commodities using LC-MS/MS. The benzovindiflupyr residues in samples were extracted by using acetonitrile, partitioned with dichloromethane, and then purified with silica solid phase extraction (SPE) cartridge. Correlation coefficient ($r^2$) of benzovindiflupyr standard solution was 0.99 over the calibration ranges ($0.001{\sim}0.5{\mu}g/mL$). Recovery tests were conducted on 5 representative agricultural commodities (mandarin, green pepper, potato, soybean, and hulled rice) to validate the analytical method. The recoveries ranged from 79.3% to 110.0% and then relative standard deviation (RSD) was less than 9.1%. Also the limit of detection (LOD) and limit of quantification (LOQ) were 0.0005 and 0.005 mg/kg, respectively. The recoveries of interlaboratory validation ranged from 83.4% to 117.3% and the coefficient of variation (CV) was 9.0%. All results were followed with Codex guideline (CAC/GL 40) and Ministry of Food and Safety guideline (MFDS, 2016). The proposed new analytical method proved to be accurate, effective, and sensitive for benzovindiflupyr determination and would be used as an official analytical method.