• Title/Summary/Keyword: Light-emitting diode

Search Result 1,394, Processing Time 0.025 seconds

LED 휘도의 디지털 제어 방식에 관한 연구 (A Study on Digital Control Method of LED Luminance)

  • 강신호;염정덕
    • 조명전기설비학회논문지
    • /
    • 제24권1호
    • /
    • pp.28-34
    • /
    • 2010
  • 발광다이오드(LED)의 휘도를 제어하는 기존 방식은 펄스폭변조(PWM)방식이 주로 사용되었다. PWM 방식은 LED의 점등시간비와 휘도가 비례하는 아날로그적인 방식으로 통신 등의 디지털 방식과는 호환이 어려운 단점을 가지고 있다. 본 연구에서는 디지털 방식으로 적, 녹, 청색 LED의 휘도를 제어하는 실험을하였다. 이를 위해 LED 구동회로와 디지털 논리회로로 구성된 LED 디지털제어 장치를 개발하였다. 디지털 입력에 대한 적, 녹, 청색 LED의 점등 펄스 수를 제어하여 다양한 광색을 구현하고, 측정한 광색의 x, y 색도좌표가 원하는 색의 CIE 색도도 영역에 포함될 수 있도록 디지털 코드를 최적화시켰다. 본 연구 결과는 디지털 통신을 이용한 LED 램프의 원격 제어로 풀 컬러를 구현하는데 효과적으로 활용될 수 있다.

트리즈 기반 OLED 증착 공정의 글래스 열 변형 개선 (TRIZ-based Improvement of Glass Thermal Deformation in OLED Deposition Process)

  • 이우성;최진영
    • 산업경영시스템학회지
    • /
    • 제40권1호
    • /
    • pp.114-123
    • /
    • 2017
  • The global small and mid-sized display market is changing from thin film transistor-liquid crystal display to organic light emitting diode (OLED). Reflecting these market conditions, the domestic and overseas display panel industry is making great effort to innovate OLED technology and incease productivity. However, current OLED production technology has not been able to satisfy the quality requirement levels by customers, as the market demand for OLED is becoming more and more diversified. In addition, as OLED panel production technology levels to satisfy customers' requirement become higher, product quality problems are persistently generated in OLED deposition process. These problems not only decrease the production yield but also cause a second problem of deteriorating productivity. Based on these observations, in this study, we suggest TRIZ-based improvement of defects caused by glass pixel position deformation, which is one of quality deterioration problems in small and medium OLED deposition process. Specifically, we derive various factors affecting the glass pixel position shift by using cause and effect diagram and identify radical reasons by using XY-matrix. As a result, it is confirmed that glass heat distortion due to the high temperature of the OLED deposition process is the most influential factor in the glass pixel position shift. In order to solve the identified factors, we analyzed the cause and mechanism of glass thermal deformation. We suggest an efficient method to minimize glass thermal deformation by applying the improvement plan of facilities using contradiction matrix in TRIZ. We show that the suggested method can decrease the glass temperature change by about 23% through an experiment.

Sb 계면활성제에 의한 p-GaN 박막의 홀농도 향상 (Enhanced Hole Concentration of p-GaN by Sb Surfactant)

  • 김자연;박성주;문영부;권민기
    • 한국진공학회지
    • /
    • 제20권4호
    • /
    • pp.271-275
    • /
    • 2011
  • 본 논문은 고휘도 발광소자의 특성을 높이기 위한 p-GaN 박의 홀농도 향상을 연구하였다. 우리는 metal organic chemical vapor deposition 법을 이용하여 Antimony (Sb)가 p-GaN의 홀농도 향상에 도움을 주는 것을 확인하였다. Atomic force microscope 측정을 통해 Sb가 계면활성제처럼 역할을 함으로써 p-GaN의 2차원 성장이 촉진됨을 알 수 있었다. 또한 X-ray diffraction 결과 [002] 면과 [102] 면의 반폭치가 Sb 도핑과 함께 줄어드는 것을 통해 Edge과 Screw 전위의 감소와 photoluminescence 결과에서 450~500 nm 청색 파장 영역에서 발광의 세기가 현저히 줄어드는 것으로 보아 질소 공극이 감소되는 것이 홀농도 향상의 주된 원임임을 알 수 있었다. Trimethylantimony가 10 ${\mu}mol/min$일 때 홀농도는 최대가 되었고 그때 홀농도는 $5.4{\times}10^{17}cm^{-3}$이었다.

도금인자에 따른 LED 리드프레임 상의 도금층의 반사특성 (Reflection Characteristics of Electroplated Deposits on LED Lead frame with Plating Condition)

  • 기세호;김원중;정재필
    • 마이크로전자및패키징학회지
    • /
    • 제20권2호
    • /
    • pp.29-32
    • /
    • 2013
  • 본 연구에서는 LED 리드프레임 상에 Sn-3.5wt%Ag를 무전해도금하여 표면 거칠기와 반사율을 측정하였다. Sn-3.5wt%Ag를 도금하기에 앞서 Sn-3.5wt%Ag 도금층의 반사율을 향상시키기 위하여 Cu 전해도금을 실시하였다. 도금 후 도금액의 교반속도와 온도가 도금층의 표면 거칠기와 반사율에 어떠한 영향을 미치는지 알아보기 위하여 각각의 도금인자에 대해서 표면 거칠기와 반사율을 측정하고자 하였다. 교반속도가 100~300 rpm으로 증가함에 따라 표면 거칠기는 0.513 ${\mu}m$에서 0.266 ${\mu}m$으로 감소하였으며, 반사율은 1.67 GAM에서 1.86 GAM으로 증가하였다. 또한 온도가 $25{\sim}45^{\circ}C$로 증가함에 따라 표면 거칠기는 0.507 ${\mu}m$에서 0.350 ${\mu}m$으로 감소하였으며, 반사율은 1.68 GAM에서 1.84 GAM으로 증가하였다.

Efficacy of an LED toothbrush on a Porphyromonas gingivalis biofilm on a sandblasted and acid-etched titanium surface: an in vitro study

  • Lee, Hae;Kim, Yong-Gun;Um, Heung-Sik;Chang, Beom-Seok;Lee, Si Young;Lee, Jae-Kwan
    • Journal of Periodontal and Implant Science
    • /
    • 제48권3호
    • /
    • pp.164-173
    • /
    • 2018
  • Purpose: The aim of this study was to evaluate the antimicrobial effect of a newly devised toothbrush with light-emitting diodes (LEDs) on Porphyromonas gingivalis attached to sandblasted and acid-etched titanium surfaces. Methods: The study included a control group, a commercial photodynamic therapy (PDT) group, and 3 test groups (B, BL, and BLE). The disks in the PDT group were placed in methylene blue and then irradiated with a diode laser. The B disks were only brushed, the BL disks were brushed with an LED toothbrush, and the BLE disks were placed into erythrosine and then brushed with an LED toothbrush. After the different treatments, bacteria were detached from the disks and spread on selective agar. The number of viable bacteria and percentage of bacterial reduction were determined from colony counts. Scanning electron microscopy was performed to visualize bacterial alterations. Results: The number of viable bacteria in the BLE group was significantly lower than that in the other groups (P<0.05). Scanning electron microscopy showed that bacterial cell walls were intact in the control and B groups, but changed after commercial PDT and LED exposure. Conclusions: The findings suggest that an LED toothbrush with erythrosine treatment was more effective than a commercial PDT kit in reducing the number of P. gingivalis cells attached to surface-modified titanium in vitro.

Alignment System Development for producing OLED using Fourth-Generation Substrate

  • Park, Jae-Yong;Han, Seok-Yoon;Lee, Nam-Hoon;Choi, Jeong-Og;Shin, Ho-Seon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.873-878
    • /
    • 2008
  • Doosan Mecatec has developed alignment system for Organic Light-Emitting Diode (OLED) display production using large size substrate. In the present article, The alignment system between the substrate and the mask, which is a core technology for producing the OLED product using the fourth-generation substrate with $730{\times}920mm^2$ or more, will be described by dividing into a substrate loader, a magnet unit, a CCD camera, etc. The substrate loader is optimized through the simulation where the central portion of the substrate droops by about 1.5mm by clamping each of a long side (920mm direction) and a short side (730mm direction) thereof by 6 point and 4 point. A magnet unit using a sheet type of rubber magnet is constituted and a CCD camera model with the specifications capable of minimizing the errors between a clear image and the same image is selected. The system to which an upward evaporation technique of small molecular organic materials will be applied has been developed so that repeatability and position accuracy becomes ${\pm}1{\mu}m$ or less using an UVW type of stage. Also, the vision accuracy of the CCD camera becomes ${\pm}1{\mu}m$ or less and the align process TACT becomes 30sec. or less so that the final alignment accuracy between the substrate and the mask becomes ${\pm}3{\mu}m$ or less. In order to meet an extra-large glass substrate, an evaporation system using an extra-large AMOLED substrate has been developing through a vertical type of an alignment system.

  • PDF

Laser Thermal Processing System for Creation of Low Temperature Polycrystalline Silicon using High Power DPSS Laser and Excimer Laser

  • Kim, Doh-Hoon;Kim, Dae-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.647-650
    • /
    • 2006
  • Low temperature polycrystalline silicon (LTPS) technology using a high power laser have been widely applied to thin film transistors (TFTs) for liquid crystal, organic light emitting diode (OLED) display, driver circuit for system on glass (SOG) and static random access memory (SRAM). Recently, the semiconductor industry is continuing its quest to create even more powerful CPU and memory chips. This requires increasing of individual device speed through the continual reduction of the minimum size of device features and increasing of device density on the chip. Moreover, the flat panel display industry also need to be brighter, with richer more vivid color, wider viewing angle, have faster video capability and be more durable at lower cost. Kornic Systems Co., Ltd. developed the $KORONA^{TM}$ LTP/GLTP series - an innovative production tool for fabricating flat panel displays and semiconductor devices - to meet these growing market demands and advance the volume production capabilities of flat panel displays and semiconductor industry. The $KORONA^{TM}\;LTP/GLTP$ series using DPSS laser and XeCl excimer laser is designed for the new generation of the wafer & FPD glass annealing processing equipment combining advanced low temperature poly-silicon (LTPS) crystallization technology and object-oriented software architecture with a semistandard graphical user interface (GUI). These leading edge systems show the superior annealing ability to the conventional other method. The $KORONA^{TM}\;LTP/GLTP$ series provides technical and economical benefits of advanced annealing solution to semiconductor and FPD production performance with an exceptional level of productivity. High throughput, low cost of ownership and optimized system efficiency brings the highest yield and lowest cost per wafer/glass on the annealing market.

  • PDF

SnO-P2O5계 유리에서 P2O5를 B2O3로 치환시 구조와 물성에 미치는 영향 (Effects of Substituting B2O3 for P2O5 on the Structure and Properties of SnO-P2O5 Glass Systems)

  • 김동환;황차원;김남진;임상혁;구동건;김태희;차재민;류봉기
    • 한국세라믹학회지
    • /
    • 제48권1호
    • /
    • pp.63-68
    • /
    • 2011
  • The investigation is directed to lead free (Pb-free) frits that can be used for organic light emitting diode, plasma display screen devices and other sealing materials. $P_2O_5$-SnO system glasses have been prepared for Pb-free low temperature glass frit. Structure and properties of the glasses with the composition SnO-$xB_2O_3-(60-x)P_2O_5$ (x=0, 5, 10, 15, 20, 25, 30, 35, 40 mol%) were characterized by infrared spectra (IR), X-ray diffraction(XRD), Density, Molar volume, Thermo mechanical analysis(TMA) and weight loss after immersion test. Glass transition temperature($T_g$), dilatometric softening temperature($T_d$) and chemical durability increased, and coefficient of thermal expansion($\alpha$) decrease with the substitution of $B_2O_3$ for $P_2O_5$ in the range of 0~25 mol%.

Comparative Analysis on Positive Bias Stress-Induced Instability under High VGS/Low VDS and Low VGS/High VDS in Amorphous InGaZnO Thin-Film Transistors

  • Kang, Hara;Jang, Jun Tae;Kim, Jonghwa;Choi, Sung-Jin;Kim, Dong Myong;Kim, Dae Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권5호
    • /
    • pp.519-525
    • /
    • 2015
  • Positive bias stress-induced instability in amorphous indium-gallium-zinc-oxide (a-IGZO) bottom-gate thin-film transistors (TFTs) was investigated under high $V_{GS}$/low $V_{DS}$ and low $V_{GS}$/high $V_{DS}$ stress conditions through incorporating a forward/reverse $V_{GS}$ sweep and a low/high $V_{DS}$ read-out conditions. Our results showed that the electron trapping into the gate insulator dominantly occurs when high $V_{GS}$/low $V_{DS}$ stress is applied. On the other hand, when low $V_{GS}$/high $V_{DS}$ stress is applied, it was found that holes are uniformly trapped into the etch stopper and electrons are locally trapped into the gate insulator simultaneously. During a recovery after the high $V_{GS}$/low $V_{DS}$ stress, the trapped electrons were detrapped from the gate insulator. In the case of recovery after the low $V_{GS}$/high $V_{DS}$ stress, it was observed that the electrons in the gate insulator diffuse to a direction toward the source electrode and the holes were detrapped to out of the etch stopper. Also, we found that the potential profile in the a-IGZO bottom-gate TFT becomes complicatedly modulated during the positive $V_{GS}/V_{DS}$ stress and the recovery causing various threshold voltages and subthreshold swings under various read-out conditions, and this modulation needs to be fully considered in the design of oxide TFT-based active matrix organic light emitting diode display backplane.

CVD로 제작된 SiO2 산화막의 투습특성 (Water Vapor Permeability of SiO2 Oxidative Thin Film by CVD)

  • 이붕주;신현용
    • 한국전자통신학회논문지
    • /
    • 제5권1호
    • /
    • pp.81-87
    • /
    • 2010
  • 본 논문에서는 유기발광다이오드 적용을 위한 보호막 혹은 barrier 적용을 위하여 화학증착방법(CVD)를 이용한 실리콘 산화막을 형성하고, 산화막의 특성에 영향을 미치는 공정조건을 변화시켰다. 이로부터 HDP-CVD를 활용한 $SiO_2$박막 증착을 위한 최적의 공정조건은 $SiH_4:O_2$=30:60[sccm]유량, 소스와 기판과의 거리가 70 [mm], 기판에 Bias를 가하지 않은 조건인 경우 8~10[mtorr] 공정압력에서 매우 안정된 플라즈마 형성이 가능한 최적의 공정조건을 얻었다. 얻어진 공정조건으로 제작된 $SiO_2$산화막의 모콘테스트를 통한 투습율(WVTR)을 조사한 결과 2.2 [$g/m^2$_day]값으로 HDP-CVD로 제작된 $SiO_2$산화막은 유기발광다이오드용 보호막으로의 적용이 어려울 것으로 생각된다.