• Title/Summary/Keyword: Light weight design

Search Result 810, Processing Time 0.032 seconds

Light-weight Design of Automotive Spring Link Based on Computer Aided Engineering (컴퓨터 시뮬레이션을 이용한 자동차용 스프링 링크의 경량화 설계)

  • Park, Jun-Hyub;Kim, Kee Joo;Yoon, Jun-Gyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.157-161
    • /
    • 2013
  • It is well known that the targeted fuel efficiency could only be achieved by more than 40% reduction of the vehicle weight through improved design and extensive utilization of lightweight materials. In order to obtain the goal of the weight reduction of automobiles, the researches about lighter and stronger spring link have been studied without sacrificing the safety of automotive components. In this study, the weight reduction design process of spring link could be proposed based on the variation of von-Mises stress contour by substituting an aluminum alloys (A356) having tensile strength of 245 MPa grade instead of SAPH440 steels. In addition, the effect of the stress and stiffness on shape variations of the spring link were examined and compared carefully. It could be reached that this approach could be well established and be contributed for light-weight design guide and the safe design conditions of the automotive spring link development.

Light-Weight Design of Maglev Car-Body Frame Using Response Surface Approximation (반응면 근사를 이용한 자기부상열차 차체 프레임 경량화 설계)

  • Bang, Je-Sung;Han, Jeong-Woo;Lee, Jong-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.11
    • /
    • pp.1297-1308
    • /
    • 2011
  • The light-weight design of UTM (Urban Transit Maglev)-02 car-body frames are performed, based on initial configuration. The thicknesses of fourteen sub-structures are defined as design variables and the loading condition is considered according to weight of sub-structures, electronic and pneumatic modules and passengers. For efficient and robust process of design optimization, objective function and constraints are approximated by response surface approximation. Structural analysis is performed at some sampling points to construct the approximated objective function and constraints composed of design variables. Design space is changed to find many optimal candidates and best optimal design can be found eventually. The Matlab Optimization Toolbox is used to find optimal value and sensitivity analysis about each design variable is also performed.

Design Modification of Airframe Shape for Ultra Light Quad-Rotor Development (초소형 쿼드로터 개발을 위한 기체형상 설계변경)

  • Park, Dae-Jin;Lee, Sangchul;Park, Saeng-Jin;Song, Tae-Hun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.4
    • /
    • pp.44-51
    • /
    • 2017
  • An ultra light quad-rotor is utilized in various areas for military and commercial purpose. Especially, the airframe shape is designed with various airframe size, weight and purpose. In this paper, the initial airframe shape of the quad-rotor was designed and manufactured. Flight test was conducted for the quad-rotor. The design modification of airframe shape was conducted to meet design requirement. By changing design, weight of airframe structure was reduced and payloads were placed to the best position. By reinforcing ribs and reducing vehicle's legs, the durability of airframe structure was enhanced.

A Study on the Estimation of Light Weight Distribution on Ship by Statistical Data (통계적 자료에 의한 선박의 경하분포추정법에 관한 연구)

  • 박명규
    • Journal of the Korean Institute of Navigation
    • /
    • v.10 no.1
    • /
    • pp.51-79
    • /
    • 1986
  • From time to time the light weight distribution has been discussed, It play an important part in the preliminary design state because of its influence on the available deadweight. Up to the past, the Light weight distribution acting on the ship has been estimated graphically by means of integraph or approximately by the simplified calculations. Recent development has made it possible to use Lloyd's coffin method or Robb's coffin method for Bulk Carrier, Tanker, Cargo ship where the hull weight is distributed based upon the $C_B$ The hull weight distribution is then super-composed by number of fixed weights(i.e. machinery , equipment, etc.) The authors built up the method by which the Light weight distribution is calculated using a computer. In the usual calculations, the higher accuracy is aimed at, the longer time would be taken, therefore the accuracy would not be so good as to be expected if the time is restricted. The method using a computer can dissolve these and calculated accurately in shorter time the Light weight distribution with less data.

  • PDF

A Study on Design of Linear Motor for Maglev for High Efficiency (자기부상열차 추진용 리니어모터 효율향상 설계연구)

  • Kim, Youn-Hyun;Kim, Ki-Chan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.561-566
    • /
    • 2016
  • In this paper, effective design method of linear induction motor(LIM) for Maglev is proposed in order to maximize system efficiency of Maglev. For the high system efficiency of Maglev, it is important to minimize weight of traction motor. Light weight design by changing materials of core and winding is conducted without changing volume of LIM. For the silicon steel core of primary part for magnetic flux path, iron-cobalt alloy steel with high magnetic saturation characteristic compared to silicon steel is suggested. Moreover, aluminium winding with light weight instead of copper winding is wounded in the widen slot area due to the high magnetic saturation level. For the verification of performance of proposed model, the characteristics are analyzed by using finite element method(FEM).

Optimum Design of a Tubular Link Chain Conveyor for Sludge Transport (슬러지 이송용 튜브형 링크체인 컨베이어의 최적설계)

  • Kim, Bong-Hwan;Jeong, Young-Jae;Lee, Chang-Ryeol
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.830-835
    • /
    • 2018
  • The tubular link chain conveyor works under very extreme conditions such as high tensile load, friction, and dangerous operating environments. In this study, we propose an optimal design plan for reducing cost and improving performance through weight reduction of tubular link chain conveyors for sludge transport. For light weight of tubular link chain conveyor, the optimization software using SHERPA algorithms, HEEDS was used in conjunction with ANSYS Mechanical V14.5, which is widely used in structural analysis, to achieve optimal tubular link chain. Through the optimization process, 19% light weight was achieved.

Structural Design of the Light Weight Axle Beam for Medium Duty Commercial Vehicle Using Hot Press (중형 상용차용 프레스 성형 차축빔의 경량화 설계)

  • Sim, Kijoong;Shin, Hangwoo;Cho, Wonyoung;Choi, Gyoojae;Lee, Youngchoon;Son, Youngho;Jeon, Namjin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.4
    • /
    • pp.371-379
    • /
    • 2015
  • This paper represents the structural design of the light weight axle beam for medium duty commercial vehicle using hot press. To reduce the weight of the axle, axle beam of solid type was replaced by hollow type which was made by hot press. According to the change of axle beam structure and manufacturing method, we have to investigate the structural strength and fatigue performance. To verify the axle beam performance, the structural analysis was carried out by simplified axle beam model and various design parameters that are axle beam height, thickness and width. From the analysis results, the light weight axle beam structure was founded and applied the full model analysis. This study will be used as a guidance in development of the light weight axle for medium duty commercial vehicle.

Light Wing Spar Design for High Altitude Long Endurance UAV (고고도 장기체공무인기 경량 주익 스파 설계)

  • Shin, Jeong Woo;Park, Sang Wook;Lee, Mu-Hyoung;Kim, Tae-Uk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.2
    • /
    • pp.27-33
    • /
    • 2014
  • There are several methods to improve the flight efficiency of HALE(High Altitude Long Endurance) UAV(Unmaned Aerial Vehicle). Airframe structural point of view, weight reduction of the airframe structure is the most important method to improve the flight efficiency. In order to reduce the weight of airframe structures, new concepts which are different from traditional airframe structure design such as the mylar wing skin should be introduced. The spar is the most important component in a mylar skin wing structure, so the spar weight reduction is the key point for reduction of the wing structural weight. In this study, design trade-off study for the front spar of the HALE UAV wing is conducted in order to reduce the weight. Design and analysis procedure of high aspect ratio wing spar are introduced. Several front spar structures are designed and trade-off study regarding the weight and strength for the each spar are performed. Spar design configurations are verified by the static strength test. Finally, optimal front spar design is decided and applied to the HALE UAV wing design.

Light weight vehicle design by stick model (스틱모델에 의한 차체 경량화 설계)

  • 김천욱;김지홍
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.97-106
    • /
    • 1990
  • A method of weight evaluation of the load-bearing structural elements of cars is presented and the weight ratio of the analysis model is investigated. Replacing the materials of floor elements of the car into the high-strength steel, a considerable weight-reduction of the model has been obtained. The 1500cc model is selected for the present study and the stick model analysis is employed for the structural analysis. The torsional stiffness of the weight-reduced model is also evaluated and it is shown it has a reasonable rigidity. The ratio of the weight of the load-bearing structural elements to the unladen vehicle weight of cars is about 0.12for the 1500cc model and the weight-reduction of this study can be obtained around 17% of the weight of the load-bearing structural elements.

  • PDF