• Title/Summary/Keyword: Light resistance

Search Result 1,042, Processing Time 0.031 seconds

Understanding the Technical Properties of Delonix regia (HOOK.) RAF. Wood: A Lesser Used Wood Species

  • Funke Grace Adebawo;Olayiwola Olaleye Ajala;Olaoluwa Adeniyi Adegoke;Timileyin Samuel Aderemi
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.1
    • /
    • pp.55-64
    • /
    • 2023
  • Properties of a lesser-used wood species were investigated to determine its potential for structural utilization. Trees of Delonix regia were felled and sampled at the base, middle and top and then sectioned to inner wood, middle wood, and outer wood for variation across the axial and radial directions. Hence, selected physical and mechanical properties as well as natural durability of D. regia along the radial and axial directions were examined. Obtained data were analyzed using analysis of variance (ANOVA) at α0.05. There was no significant difference in the Moisture content (MC) of the wood but specific gravity (SG) decreased from base to top ranging from 0.35-0.44. Water absorption, volumetric swelling, and volumetric shrinkage range from 46.18-51.86%, 2.57-4.02%, and 2.26-3.96% respectively along the axial plane. The weight loss for graveyard exposure and accelerated laboratory decay test ranged from 25.14-48.00% and 32.02-44.45% respectively. Modulus of Rupture and Modulus of Elasticity values range from 29.42-72.68 Nmm2 and 3,834.54-8,830.37 Nmm2 respectively. The SG values has confirmed the species as a medium density wood and values of other properties tested showed that the wood is dimensional stable and moderately resistance to fungi and termite. Hence, it could be used for light construction purposes such as furniture and other interior woodwork.

Photocatalytic and photoelectrocatalytic properties of anodic titanium dioxide nanotubes based on anodizing conditions (양극산화 조건에 따른 이산화티타늄 나노튜브의 광촉매 및 광전기화학적 특성)

  • Yeonjin Kim;Rin Jung;Jaewon Lee;JeongEun Yoo;Kiyoung Lee
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.2
    • /
    • pp.137-146
    • /
    • 2023
  • Nanosized TiO2 has been widely investigated in photoelectrochemical or photocatalytic applications due to their intrinsic properties such as suitable band position, high photocorrosion resistance, and surface area. In this study, to achieve the high efficiency in photoelectrochemical and photocatalytic performance, TiO2 nanotubular structures were formed by anodization at various temperatures and times. The morphological and crystal structure of the anodized TiO2 nanotubes (NTs) were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD). The photoelectrochemical (PEC) properties and incident photon-to-current conversion efficiency (IPCE) of the TiO2 NTs were studied with different lengths and morphologies. From the detailed investigations, the optimum thickness of TiO2 nanotubes was 3 ㎛. Moreover, we found that the optimum photocatalytic pollutant removal efficiency of TiO2 nanotubes for photodegradation of Rhodamine B (RhB) under simulated solar light was 5.34 ㎛ of tube length.

Characteristics of Structural Behavior and Safety Estimation of Water Supply GFRP Pipe (상수도용 유리섬유복합관의 구조적 거동특성 및 안전성 평가)

  • Lee, Bo-Be;Lee, Seung-Sik;Joo, Hyung-Jong;Yoon, Soon-Jng
    • Composites Research
    • /
    • v.22 no.3
    • /
    • pp.1-8
    • /
    • 2009
  • In this paper, we present the results of experimental and analytical investigations on the structural behavior of GFRP pipes used in the water supply pipeline system. Cross-section of the pipe is consisted with two GFRP tubes and polymer mortar between the tubes. Due to the advantages such as light-weight, corrosion resistance, smooth surface, flexibility, etc., use of GFRP pipe in the water supply pipeline system is ever increasing trend. Therefore, more optimized structural design methodology should be developed. In the investigation, we conducted theoretical and analytical studies on the load versus radial deformation characteristics of GFRP pipes. In addition, ring stiffness test is also performed. Test results are compared with theoretical and analytical results and it was found that the results are agreed well within 5% of radial deformation. Finally, it was also found that the GFRP pipes used in the water supply pipeline system are strong enough to satisfy the industrial requirements.

Ballistic Analysis and Stacking Sequence of Laminate Plate for Enhancing Bulletproof Performance (방탄 성능 향상을 위한 적층 평판의 피탄 해석 및 적층 배열 연구)

  • Ki Hyun Kim;Min Kyu Kim;Min Je Kim;Myung Shin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.5
    • /
    • pp.331-338
    • /
    • 2023
  • Modern bulletproof armor must be light and have excellent penetration resistance to ensure the mobility and safety of soldiers and military vehicles. The ballistic performance of heterogeneous structures of laminated flat plates as bulletproof armor depends on the arrangement of constituent materials for the same weight. In this study, we analyze bulletproof performance according to the stacking sequence of laminated bulletproof armor composed of Kevlar, ultra-high molecular weight polyethylene, and ethylene-vinyl-acetate foam. A ballistic analysis was performed by colliding a 7.62 × 51 mm NATO cartridge's M80 bullet at a speed of 856 m/s with six lamination arrangements with constituent materials thicknesses of 5 mm and 6.5 mm. To evaluate the bulletproof performance, the residual speed and residual energy of the projectile that penetrated the heterogeneous laminated flat plates were measured. Simulation results confirmed that the laminated structure with a stacking sequence of Kevlar, ultra-high molecular weight polyethylene, and ethylene-vinyl-acetate foam had the best bulletproof performance for the same weight.

Fabrication of Porous Cellulose Acetate Propionate/Polybutylene Succinate Microfibers by High Speed Centrifugal Spinning (초고속 원심방사에 의한 아세트산프로피온산 셀룰로오스/폴리부틸렌 숙시네이트 다공성 마이크론 섬유 제조)

  • Tae Young Kim;Mi Kyung Kim;Jinsoo Kim;Jungeon Lee;Jae Hoon Jung;Youngkwon Kim;Tae Hyeon Kim;Ki Young Kim;Jeong Hyun Yeum
    • Textile Coloration and Finishing
    • /
    • v.35 no.4
    • /
    • pp.239-245
    • /
    • 2023
  • Cellulose is an abundant biodegradable material in nature with excellent properties, but due to its poor processability, it has been widely studied for processing through modification. Cellulose acetate propionate (CAP) is a cellulose derivative in which the hydroxyl group of cellulose is replaced by acetyl and propionyl groups. CAP has several advantages, such as excellent solubility, structural stability, light and weather resistance, and good transparency. Porous nanofibers with excellent specific surface area, which can be applied in various fields, can be easily formed by the phase separation method using highly volatile solvents. High speed centrifugal spinning is a nano/micro fiber preparation method with advantages such as fast spinning and easy alignment control. In this study, a CAP/polybutylene succinate (PBS) spinning solution with chloroform as solvent was prepared to prepare porous microfibers and the fiber morphology was examined as a function of the disk rotation speed in an high speed centrifugal spinning device.

Electrical and Optical Properties of Fluorine-Doped Tin Oxide Films Fabricated at Different Substrate Rotating Speeds during Ultrasonic Spray Pyrolysis Deposition (초음파 분무 열분해 증착 중 기판 회전 속도에 따른 플루오린 도핑 된 주석산화물 막의 전기적 및 광학적 특성)

  • Ki-Won Lee;yeong-Hun Jo;Hyo-Jin Ahn
    • Korean Journal of Materials Research
    • /
    • v.34 no.1
    • /
    • pp.55-62
    • /
    • 2024
  • Fluorine-doped tin oxide (FTO) has been used as a representative transparent conductive oxide (TCO) in various optoelectronic applications, including light emitting diodes, solar cells, photo-detectors, and electrochromic devices. The FTO plays an important role in providing electron transfer between active layers and external circuits while maintaining high transmittance in the devices. Herein, we report the effects of substrate rotation speed on the electrical and optical properties of FTO films during ultrasonic spray pyrolysis deposition (USPD). The substrate rotation speeds were adjusted to 2, 6, 10, and 14 rpm. As the substrate rotation speed increased from 2 to 14 rpm, the FTO films exhibited different film morphologies, including crystallite size, surface roughness, crystal texture, and film thickness. This FTO film engineering can be attributed to the variable nucleation and growth behaviors of FTO crystallites according to substrate rotation speeds during USPD. Among the FTO films with different substrate rotation speeds, the FTO film fabricated at 6 rpm showed the best optimized TCO characteristics when considering both electrical (sheet resistance of 13.73 Ω/□) and optical (average transmittance of 86.76 % at 400~700 nm) properties with a figure of merit (0.018 Ω-1).

Impact Tensile Properties and Intergranular Fracture Behavior with Strain Rate Variations of Al-M g-X (X = Cr,Si) Alloy

  • Chang-Suk Han;Min-Gyu Chun;Sung-Soon Park;Seung-In Lim
    • Korean Journal of Materials Research
    • /
    • v.34 no.7
    • /
    • pp.330-340
    • /
    • 2024
  • Al-Mg-Si alloys are light weight and have excellent corrosion resistance, and are attracting attention as a liner material for high-pressure hydrogen containers in hydrogen fuel cell vehicles. Because it has excellent plastic hardening properties, it is also applied to car body panel materials, but it is moderate in strength, so research to improve the strength by adding Si-rich or Cu is in progress. So far, the authors have conducted research on the intergranular fracture of alloys with excessive Si addition from the macroscopic mechanical point of view, such as specimen shape. To evaluate their impact tensile properties, the split-Hopkinson bar impact test was performed using thin plate specimens of coarse and fine grain alloys of Al-Mg-X (X = Cr,Si) alloy. The effect of the shape of the specimen on the characteristics was studied through finite element method (FEM) analysis. As a result, it was found that the intergranular fracture of the alloy with excessive Si depended on the specimen width (W)/grain size (d), which can be expressed by the specimen size and grain size. As W/d decreases, the intergranular fracture transforms into a transgranular fracture. As the strain rate increases, the fracture elongation decreases, and the fracture surface of the intergranular fracture becomes more brittle. It was confirmed that intergranular fracture occurred in the high strain rate region even in materials with small grain sizes.

Development of Fluid Silicic Acid Coating with Paint Materials of the Steel Electric Power Facilities (강재 전력시설물을 위한 액상 규산질 도장제 개발에 대한 연구)

  • Kwon, Seung-Jun;Park, Sang-Sun;Lee, Sang-Min;Lee, Myung-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.57-64
    • /
    • 2008
  • Generally, organic paint on steel towers can guarantee durability in normal condition but occasionally shows its deterioration on the power line tower and electric power facilities, exposed to light(ultra violet) or heat. The objective of this study is to develope the inorganic paint material based on fluid silicic acid for steel electric power facilities. For the purpose, optimal mixture proportion is derived through 6 preliminary test and, additionally physical and durability performance test are carried out for selected specimens. The performances of developed organic paint material is similar to those of organic paint material. If resistance to chemical attack is improved, the developed inorganic paint is evaluated to replace the organic paint and obtain wide application.

A New Vegetable Soybean Cultivar, 'Sangwon' with Early Maturity and High Yield (풋콩용 조숙 다수성 신품종 '상원')

  • Ko, Jong-Min;Baek, In-Youl;Han, Won-Young;Kim, Hyun-Tae;Oh, Ki-Won;Shin, Sang-Ouk;Park, Keum-Yong;Ha, Tae-Jung;Shin, Doo-Chull;Chung, Myung-Geun;Kang, Sung-Taek;Yun, Hong-Tae;Oh, Young-Jin;Lee, Jong-Hyung;Son, Chang-Ki;Kim, Yong-Deuk
    • Korean Journal of Breeding Science
    • /
    • v.42 no.6
    • /
    • pp.684-689
    • /
    • 2010
  • 'Sangwon', a new cultivar for vegetable soybean, was developed from the cross between 'Keunolkong' and 'Oshimamidori', and was released at the National Institute of Crop Science (NICS) in 2007. The goal to develop a vegetable soybean cultivar with green pod, early maturity, large seed size, high yield, lodging tolerance, and resistance to disease such as soybean mosaic virus (SMV). 'Sangwon' has light green pod, early maturity, large seed, short plant height, and lodging tolerance. 'Sangwon' has determinate growth habit, white flower, gray pubescence, and oval leaf shape. The matured seeds have a yellow seed coat with light brown hilum, and a yellow cotyledon. 'Sangwon' has 5.8 cm fresh pod length, 13.2mm fresh pod width, 69.5 g seed weight per 100 green seeds, 44.0% green seed protein content, and 14.8% green seed oil content. At the regional yield trials (RYT) for vegetable soybean from 2005 to 2007, 'Sangwon' shows strong resistance to soybean mosaic virus (SMV) and tolerance to lodging in fields. Fresh pods of 'Sangwon' were harvested at the beginning of August. In the same tests, fresh pod of 'Sangwon' (10.39ton/ha) yielded 5% higher than 'Hwaeomputkong' (9.90ton/ha).

An Improved Method to Determine Corn (Zea mays L.) Plant Response to Glyphosate (Glyphosate에 대한 옥수수 반응의 개선된 검정방법)

  • Kim, Jin-Seog;Lee, Byung-Hoi;Kim, So-Hee;Min, Suk-Ki;Choi, Jung-Sup
    • Journal of Plant Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.57-62
    • /
    • 2006
  • Several methods for determining the response of corn to glyphosate were investigated to provide a fast and reliable method for identifying glyphosate-resistant corn in vivo. Two bioassays were developed. One assay is named 'whole plant / leaf growth assay', in which the herbicide glyphosate is applied on the upper part of 3rd leaf and the growth of herbicide-untreated 4th leaf is measured at 3 day after treatment. in this assay, the leaf growth of conventional corn was inhibited in a dose dependent from 50 to $1600{\mu}g/mL$ of glyphosate and growth inhibition at $1600{\mu}g/mL$ was 55% of untreated control. The assay has the potential to be used especially in the case that the primary cause of glyphosate resistance is related with a reduction of the herbicide translocation. Another assay is named 'leaf segment / shikimate accumulation assay', in which the four excised leaf segments ($4{\times}4mm$) are placed in each well of a 48-well microtiter plate containing $200{\mu}L$ test solution and the amount of shikimate is determined after incubation for 24 h in continuous light at $25^{\circ}C$. In this assay, 0.33% sucrose added to basic test solution enhanced a shikimate accumulation by 3 to 4 times and the shikimate accumulation was linearly occurred from 2 to $8{\mu}g/mL$ of glyphosate, showing an improved response to the method described by Shaner et al. (2005). The leaf segment / shikimate accumulation assay is simple and robust and has the potential to be used as a high throughput assay in the case that the primary cause of glyphosate resistance is related with EPSPS, target site of the herbicide. Taken together, these two assays would be highly useful to initially select the lines obtained after transformation, to investigate the migration of glyphosate-resistant gene into other weeds and to detect a weedy glyphosate-resistant corn in field.