

pISSN 1229-3059 eISSN 2287-2302 Computational Structural Engineering Institute of Korea

방탄 성능 향상을 위한 적층 평판의 피탄 해석 및 적층 배열 연구

김 기 현^{1†}·김 민 규²·김 민 제³·신 명⁴

¹한양대학교 기계공학부 박사후연구원,²현대로템 분석평가팀 연구원, ³한양대학교 융합기계공학과 석사과정,⁴한양대학교 융합기계공학과 석박사통합과정

Ballistic Analysis and Stacking Sequence of Laminate Plate for Enhancing Bulletproof Performance

Ki Hyun Kim^{1†}, Min Kyu Kim², Min Je Kim³ and Myung Shin⁴

¹Postdoctoral Researcher, School of Mechanical Engineering, Hanyang University, Seoul, 04763, Korea
²Research Engineer, Analysis & Evaluation Team, Hyundai Rotem, Uiwang, 16082, Korea
³Mater's Student, Department of Mechanical Convergence Engineering, Hanyang University, Seoul, 04763, Korea
⁴Integrated Master's and Doctorate Student, Department of Mechanical Convergence Engineering, Hanyang University, Seoul, 04763, Korea

Abstract

Modern bulletproof armor must be light and have excellent penetration resistance to ensure the mobility and safety of soldiers and military vehicles. The ballistic performance of heterogeneous structures of laminated flat plates as bulletproof armor depends on the arrangement of constituent materials for the same weight. In this study, we analyze bulletproof performance according to the stacking sequence of laminated bulletproof armor composed of Kevlar, ultra-high molecular weight polyethylene, and ethylene-vinyl-acetate foam. A ballistic analysis was performed by colliding a 7.62×51 mm NATO cartridge's M80 bullet at a speed of 856 m/s with six lamination arrangements with constituent materials thicknesses of 5 mm and 6.5 mm. To evaluate the bulletproof performance, the residual speed and residual energy of the projectile that penetrated the heterogeneous laminated flat plates were measured. Simulation results confirmed that the laminated structure with a stacking sequence of Kevlar, ultra-high molecular weight polyethylene, and ethylene-vinyl-acetate foam had the best bulletproof performance for the same weight.

Keywords : ballistic analysis, Kevlar, UHMWPE, EVA foam, laminate plate, stacking sequence

1. 서 론

전투 무기의 발전이 가속화됨에 따라 고효율 방탄 장갑의 개발은 탄환 및 폭발물과 같은 고속 및 고에너지 발사체의 충 격으로부터 군인과 군차량을 보호하기 위해 필수적이다. 방탄 장갑의 방탄 성능을 높이기 위하여 재료 강도, 내구성, 충격흡 수율 등 충격에 대한 재료의 저항성을 종합적으로 고려한 연구 가 진행되어 왔다. 국방 기술의 발전에 따른 방탄 장갑의 최근 개발 동향에서는 재료 자체의 방탄 성능뿐만 아니라 경량화 및 제작비용을 함께 고려한 종합적인 설계가 중요시되고 있다. 이를 위해 다양한 재료가 적층된 이종 적층 구조의 방탄 장갑

[†]Corresponding author:

연구가 활발하게 이루어지고 있다. 따라서 각 재료의 특성을 이해하고 요구조건에 맞는 적절한 재료를 선택하여 조합시키 는 것이 중요하다.

섬유 강화 복합재는 높은 강도와 경도를 가지면서도 상대적으 로 가벼운 재료특성으로 인해 방탄 장갑의 경량화에 있어 핵심적 인 역할을 한다. 대표적으로 섬유 강화 복합재인 케블라(Kevlar) 와 초고분자량 폴리에틸렌(UHMWPE; Ultra High Molecular Weight Polyethylene)은 이방성 재료의 구조적 특성과 가벼운 무게를 갖고 있어 방탄 장갑 제작 재료로 널리 사용되고 있다. Clegg 등은 케블라의 이방성 물성치에 대한 실험을 진행하였고 이에 따른 수치 모델을 제안하였다(Clegg *et al.*, 2006). Tham

Tel: +82-2-2220-0451; E-mail: kimkh8803@gmail.com Received July 19 2023; Revised August 21 2023; Accepted August 22 2023

^{© 2023} by Computational Structural Engineering Institute of Korea

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License(http://creativecommons. org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

등(2008)은 케블라로 제작된 헬멧의 탄도 충돌에 대한 실험 및 시뮬레이션을 수행하였다. 한편, Chen 등(1997)에 의해서 초 고분자량 폴리에틸렌의 소성 거동을 설명하기 위한 항복함수 이론이 제안되었다. Lässig(2015)은 초고분자량 폴리에틸렌 평판에 대한 고속 발사체 충돌 실험과 시뮬레이션을 통해 탄 성, 가소성, 파손 그리고 연화를 고려한 초고분자량 폴리에틸 렌 재료 모델을 제안하였다. 또한, Grujicic 등(2009)은 고속 발 사체가 초고분자량 폴리에틸렌 평판을 관통할 때의 방탄 장갑 내부의 변형 및 파손 모드를 상세하게 분석하였다. 최근에는 내부 적층(sub-laminate) 기법을 통해 초고분자량 폴리에틸렌 평판을 모델링하여 복합 재료의 연화와 박리 과정을 효과적으 로 구현하는 모델이 제안되었다(Hazzard *et al.*, 2018; Nguyen *et al.*, 2016).

초탄성 재료는 뛰어난 충격 흡수 능력으로 인해 피격체를 보호하는데 많이 사용되어 왔다. 초탄성 재료들 중에서 특히 에바 폼(EVA foam; Ethylene Vinyl Acetate foam)은 높은 변형 률과 복원력을 갖고 있어 에너지 흡수능력이 우수할 뿐만 아니 라 내구성도 우수하여 군 산업 분야에서 널리 활용되고 있다. Chang 등(2021)은 다양한 밀도의 에바 폼이 부착된 방탄 평판 을 이용하여 피탄 실험을 수행하여 에바 폼의 밀도가 방탄 성 능에 미치는 영향을 확인하였다.

이종 적층 구조의 방탄 장갑은 재료들 간의 복잡한 상호작 용이 발생하며, 재료들의 배열에 따라 방탄 성능이 크게 달라 지게 된다. 따라서 다양한 배열 가능성 중에서 최적의 방탄 성능 을 갖는 배열 패턴을 찾는 것이 중요하다. 따라서 방탄 장갑의 경량화를 고려하면서 우수한 방탄 성능을 얻기 위한 적층 배열 에 대한 다양한 연구가 수행되었다. Guo 등(2002)은 섬유복합 재 케블라와 초고분자량 폴리에틸렌을 각각 세라믹 재료와 결합 하여 피탄 해석을 수행하였다. 유사하게 Pundhir 등(2021)은 케블라, 초고분자량 폴리에틸렌 그리고 알루미나 재료를 결합 한 이종 적층 평편모델을 사용하여 탄환의 모양과 각도에 따른 방탄 성능을 시뮬레이션을 통해 분석하였다. 또한 Qu 등(2020) 은 간격을 둔 다층 알루미늄 및 초고분자량 폴리에틸렌 평판의 관통 저항을 조사하기 위한 고속 발사체 충돌 실험을 수행하였다.

기존 연구들에서는 다양한 재료의 조합을 이용한 방탄 장갑 연구가 수행되었지만 케블라, 초고분자량 폴리에틸렌 그리고 에바폼을 사용한 이종 적층 평판에 대한 연구는 아직 진행되지 않았음을 확인하였다. 따라서 본 논문에서는 이 3 가지 재료로 구성된 적층 평판의 방탄 성능에 대한 분석을 진행하였다. 평 판의 배열 순서에 따른 파손 정도를 정량화 하기 위해 발사체 의 잔류 속도와 잔류 에너지를 측정하여 분석하였다. 이를 함 께 발사체와 방탄 장갑 재료의 거동을 확인하여 최적의 방탄 성능을 갖는 장갑 재료 배열을 결정하였다.

2. 피탄 해석을 위한 재료 모델 결정

본 연구에서는 적층 평판의 방탄 성능 향상을 위해 케블라, 초고분자량 폴리에틸렌 그리고 에바 폼 3가지 적층 재료를 사 용하여 피탄 해석을 수행하고, 이 3가지 구성 재료의 배열 순서 에 따른 방탄 효과를 분석하였다. 방탄 효과의 정밀한 분석을 위해서는 고속 충돌 시 재료에 발생하는 탄소성 거동뿐만 아니 라 재료의 다양한 파손 거동을 정확히 고려할 필요가 있다. 고 속 충돌 해석에서 재료의 파손은 응력과 변형률이 기준 한도를 초과할 때 발생하며 재료의 파손 모델에 따라 충돌 후 재료 거 동이 달라지기 때문에 상황에 맞는 파손 모델을 선택하고 모델 링하는 것이 중요하다. 다양한 재료 물성치 실험을 통하여 파 손 모델의 정확한 물성치를 얻어내는 것도 중요하나 본 연구에 서는 발사체의 고속 충돌 실험의 중요한 몇 가지 현상을 재현 하는 정도의 물성치를 결정하여 피탄 해석에 사용하였다.

2.1 발사체 재료

방탄 성능을 평가하기 위해 7.62 × 51mm NATO 탄환의 M80 탄두를 모델링하여 피탄 해석을 수행하였으며, M80 탄두 는 납(탄심)과 구리(탄자피)로 구성되었다. 납과 구리는 ANSYS "Engineering Data Source"에서 제공하는 "Lead"와 "Copper" 의 물성치를 사용하되 발사체가 9.6g의 질량을 갖도록 납의 밀 도만 10.813kg/m³으로 조정하여 모델링하였다. 빠른 속도로 충돌하는 탄환의 동적 거동 응답을 정의하기 위해 ANSYS AUTODYN에서 제공하는 납과 구리의 충격 상태방정식(shock equation of state)를 사용하였다.

2.2 방탄 장갑 재료

2.2.1 섬유 강화 복합재료(Kevlar/UHMWPE)

케블라와 초고분자량 폴리에틸렌과 같은 복합재료는 기지 재(matrix)를 기반으로 압착 성형한 섬유 강화 복합재료이다. 충돌 시 섬유 간의 마찰로 인해 중량 대비 충격 에너지를 흡수 하는 능력이 매우 우수하다고 알려져 있다. 또한 최근 연구에 따르면 고속 발사체와의 충돌 후 일어나는 섬유 강화 복합재료 의 섬유인출 현상은 표적 내부를 관통하는 발사체의 운동에너 지를 감소시킨다고 알려져 있다. 충돌 시 최대 응력을 분산시 키는 방향으로 각 섬유의 파손이 지연되며 섬유 인출 과정에 저항하여 발사체의 관통을 막게 된다(Guo *et al.*, 2022; Hazzard *et al.*, 2018; Lässig *et al.*, 2015; Pundhir *et al.*, 2021; Qu *et al.*, 2020). 이런 특성 때문에 중량 대비 높은 방탄 성능을 가지는 섬유 강화 복합재료는 방탄 장갑 경량화를 위한 방탄 재료로 널리 사용되고 있다. 하지만 고속 충격에 대한 우수한 방탄 성 능을 보여주는 복합재의 거동과 그 이유에 대해서는 과학적/ 공학적 분석이 더 필요한 것으로 판단된다. 본 연구에서 다루 는 섬유 강화 복합재료의 충격 에너지 흡수능력은 다음의 방정 식을 따른다.

$$R = kWC \quad where \quad C = \sqrt{\frac{E}{\rho}} \tag{1}$$

R은 방탄 성능을 나타내고, k는 비례상수, W는 섬유 길이당 파괴 에너지, C는 섬유 길이 방향의 변형률 전파속도, E는 섬 유의 탄성계수 그리고 ρ는 섬유의 밀도이다. 섬유 강화 복합재 료는 변형이 증가할수록 탄성계수 E가 증가하여 충격 흡수능 력이 커지는 재료임을 간접적으로 알 수 있다.

섬유 강화 복합재료인 케블라와 초고분자량 폴리에틸렌의 이방성 재료 변형을 표현하기 위해 직교 상태방정식(orthotropic EOS)을 사용하였다. 케블라는 연성률이 매우 낮기에 재료 인 장 응력 및 변형률(material tensile stress and strain)을 기준으로 하는 파손 모델을 적용하였다. 케블라는 방탄 재료로서 활용 되는 경우 주로 에폭시(epoxy) 수지로 접착 및 코팅되어 사용 된다. 이러한 점에서 케블라의 물성치로 ANSYS AUTODYN 에서 제공하는 "KEV-EPOXY"을 사용하였다. 초고분자량 폴 리에틸렌의 경우에는 고속 충돌 거동을 표현하기 위해 충격 체 적 거동(shock volumetric response) 모델을 적용하였다. 초고 분자량 폴리에틸렌의 비선형적인 이방성 경화와 파손은 각각 직교 항복 강도(orthotropic yield strength) 모델과 직교 연화 파손 (orthotropic softening failure) 모델을 사용하여 모델링하였다.

본 연구에서는 초고분자량 폴리에틸렌의 물성치에 대한 신 뢰성을 확보하기 위해 구성품 탄도 시험을 수행하였고 Fig. 1 은 그 시험 결과를 보여준다. Fig. 1(a)와 Fig. 1(b)는 각각 관통 되지 않은 초고분자량 폴리에틸렌을 전면과 후면에서 촬영한 것이다. 시험 결과를 근거로 하여 시험 결과와 유사한 피탄 해 석 결과를 갖는 물성을 확보하고자 하였다. 따라서 시뮬레이 션을 수행하여 초고분자량 폴리에틸렌 평판의 관통 여부 및 변 형 정도를 시험 결과와 비교해 가면서 파손 모델의 주요한 일 부 물성치를 조정하였다.

Fig. 2는 시험에서의 두께와 동일한 *t* = 12mm 두께의 초고 분자량 폴리에틸렌 평판에 대한 7.62 × 51mm NATO 탄환의 고속 충돌 시뮬레이션 결과를 보여준다. Fig. 2(a)와 Fig. 2(b)는 각각 초고분자량 폴리에틸렌의 일부 물성치가 조정되기 전과 후의 시뮬레이션 결과를 보여준다. 시뮬레이션에 사용된 기본 물성은 초고분자량 폴리에틸렌을 사용한 기존 연구(Chen *et al.*, 1997; Guo *et al.*, 2022; Nguyen *et al.*, 2016)를 참조하여 구 성하였다. 구성품 시험에 사용한 초고분자량 폴리에틸렌 재료 는 참고 문헌의 재료와 완전히 동일하다고 할 수 없기 때문에 시뮬레이션 결과를 시험 결과와 비교하였을 때 관통 현상이 유 사하게 나타나도록 파손 모델의 주요 물성치를 점차적으로 증 가시켜 가며 조정하였다. 결과적으로 섬유 배열 방향의 tensile failure stress를 4배(4.6GPa) 증가시켰으며 maximum shear stress를 2배(1.15GPa) 증가시켰다. Table 1은 본 연구에서 사 용한 초고분자량 폴리에틸렌의 물성치를 정리한 것이다.

조정된 물성치의 신뢰성을 추가로 검증하기 위해 Fig. 3과 같이 조정된 물성치가 적용된 초고분자량 폴리에틸렌 평판의 요소 조밀도에 따른 피탄 해석을 수행하였다. Fig. 3(a)는 요소 크기가 서로 다른 두 모델을 보여주며, Fig. 3(b)와 Fig. 3(c)는 두 모델에 대한 피탄해석 결과로서 각각 발사체의 잔류 속도 변화와 초고분량 폴리에틸렌 평판의 에너지 변화를 보여준다. 충돌해석의 경우 요소의 크기가 작아질수록 실제 충돌 거동에 가까운 거동을 나타내지만, 요소의 특성 길이가 작아짐에 따 라시간 증분이 작아져 해석 소요 시간이 증가한다. 따라서 해 석의 정확도와 소요 시간 측면에서 적절한 요소 크기 값을 사 용하는 것이 매우 중요하다. 본 연구에서는 탄환의 잔류 속도 와 초고분자량 폴리에틸렌의 에너지 값이 수렴하는 것을 근거 로 발사체의 요소 크기를 3mm로 설정하였다. 피격체의 요소

Fig. 2 Ballistic simulation of UHMWPE (a) before and (b) after adjusting material properties

Table 1 Orthotropic material model for UHMWPE

	Properties	Value	Source
	Density (kg/m ³)	980	
	Young's modulus 11 (GPa)	51.1	
	Young's modulus 22 (GPa)	3.62	Nguyen
	Young's modulus 33 (GPa)	51.1	et al.,
EOS:	Shear modulu 12 (GPa)	0.192	2016
Orthotropic	Shear modulu 23 (GPa)	2	
oraioaopie	Shear modulu 31 (GPa)	2	
	Poisson's ratio 12	0.013	Guo
	Poisson's ratio 23	0.013	et al.
	Poisson's ratio 31	0.01	2022
	Gruneisen coefficient	1 64	
Volumetric	Parameter C1 (m/s)	3.57×10^3	Nouven
response.	Parameter S1	13	et al
Shock	Reference temperature	203	2016
SHOCK	Specific heat (I/kgK)	1.85×10^3	2010
	Blasticity constant 11	1.63×10^{-4}	
	Plasticity constant 11	0 ^ 10	
	Plasticity constant 22	0.010	
	Plasticity constant 33	6 × 10 ·	<i>a</i> 1
	Plasticity constant 12	0	Chen
	Plasticity constant 23	0	et al.,
	Plasticity constant 31	0	1997
	Plasticity constant 44	1.7	
	Plasticity constant 55	1	
	Plasticity constant 66	1.7	
	Effective stress #1 (kPa)	1.48×10^{3}	
	Effective stress #2 (kPa)	7.0×10^{3}	
	Effective stress #3 (kPa)	2.7×10^{4}	
	Effective stress #4 (kPa)	4.0×10^{4}	
Strength:	Effective stress #5 (kPa)	5.0×10^{4}	
Orthotropic	Effective stress #6 (kPa)	6.0×10^{4}	
yield	Effective stress #7 (kPa)	$8.0 imes 10^4$	
	Effective stress #8 (kPa)	9.8×10^{4}	
	Effective stress #9 (kPa)	2.0×10^{5}	N
	Effective stress #10 (kPa)	1.0×10^{6}	Nguyen
	Effective plastic strain #1	0	<i>et al.</i> ,
	Effective plastic strain #2	0.01	2016
	Effective plastic strain #3	0.1	
	Effective plastic strain #4	0.15	
	Effective plastic strain #5	0.175	
	Effective plastic strain #6	0.19	
	Effective plastic strain #7	0.2	
	Effective plastic strain #8	0.205	
	Effective plastic strain #9	0.21	
	Effective plastic strain #10	0.215	
	Tensile failure stress 22 (GPa)	1×10^{20}	Disabled
	Tensile failure stress 11 (GPa)	4.6	Values
	Tensile failure stress 33 (GPa)	4.6	suggested
	Maximum shear stress 12 (GPa)	1.15	in this
	Maximum shear stress 22 (GPa)	1.15	etudy
Failure:	Maximum shear stress 25 (GFa)	0.12	study
Orthotropic	Erroture operary 11 (1/m ²)	20	
softening	$\frac{1}{1} = \frac{1}{1} = \frac{1}$		Nor
	Fracture energy $22 (J/m^2)$	/90	Nguyen
	Fracture energy $33 (J/m^2)$	<u> </u>	<i>et al.</i> ,
	Fracture energy $12 (J/m^2)$	1.46×10^{3}	2016
	Fracture energy 23 (J/m ²)	1.46×10^{3}	
	Fracture energy 31 (J/m ²)	1.46×10^{3}	

*: 22-direction indicates the through thickness direction

Fig. 3 (a) Two finite element models of coarse mesh size(left) and fine mesh size(right), (b) velocity profile of projectile according to mesh size, and (c) energy profile of UHMWPE according to mesh size

크기는 발사체와의 충돌 부분에서 발사체의 요소 크기와 어느 정도 일치하도록 설정하되 섬유에 평행한 측방향으로 요소 크 기를 점차 증가시켰다. 따라서 측방향으로 155개의 요소를 사 용하였고 중심으로부터 바깥 방향으로의 bias 값을 10으로 설 정하였다. 2.2.2 에바 폼(EVA foam)

에바 폼은 일반적으로 다른 재료보다 높은 변형률 에너지를 가지며 복원력이 높은 물질로 알려져 있다. 고속 충격하에서 에바 폼은 높은 신장률을 통해 발사체의 충돌 시간을 증가시킨 다. 이를 통해 피격체가 받는 시간 당 충격량을 줄여주기 때문 에 충격 흡수재로서 많이 사용이 된다(Chang *et al.*, 2021). 고 속 충돌 해석에서 이러한 에바 폼의 변형 특성을 고려하기 위 하여 일반적으로 초탄성 모델이 사용된다. 본 연구에서는 발 사체의 충돌시 생기는 에바 폼의 비선형 거동을 표현하기 위해 초탄성 재료의 높은 신장률을 표현하기 적절한 Ogden 2차 모 델을 사용하였다. 에바 폼의 물성 데이터는 ANSYS "Engineering Data Source-Hyperelastic"에서 제공되는 응력-변형률 데이터 를 사용하였으며 에바 폼의 밀도는 30kg/m³로 설정하였다.

3. 피탄 해석 모델 구축 및 최적 적층 배열 결정

3.1 피탄 해석 모델 구축

본 연구에서는 적층 평판에 대한 고속 충돌시 대략적인 상 황 분석이 가능한 정도의 해석 모델을 구축하였다. 효율적인 유한요소해석을 위하여 2차원 축 대칭 모델을 Fig. 4와 같이 구 축하였다. 해석에 사용된 발사체는 M80 탄두의 형상을 참고 하여 모델링하였다. 방탄장갑을 이루는 구성 재료들은 동일한 두께를 갖도록 하였다. 국방관련 연구에서 수행하는 고속체 충돌 실험 및 방탄 장갑 검증 실험을 재현하기 위하여 방탄 장 갑의 바깥쪽 면이 고정된 상태에서 발사체가 복합체와 1mm 거리에서 856m/s의 속도로 투사되도록 시뮬레이션을 구성하 였다. 방탄 장갑은 케블라, 초고분자량 폴리에틸렌 그리고 에 바 폼이 적층되는 구조이며, 배열 순서에 따라 총 6가지 시뮬레 이션 모델을 구성하였다.

방탄 장갑은 직접적인 파괴와 변형으로 고속 탄환의 에너지 를 물리적으로 소산 및 흡수하여 피격체를 보호하는 것을 궁극 적인 목적으로 한다. 다양한 형태 및 에너지 크기를 가진 발사 체와 여러 피격 상황을 가정할 필요가 있기 때문에 방탄 장갑 의 에너지 흡수 정도를 시뮬레이션에서의 방탄 성능 평가 기준 으로 고려하는 것이 적절하다. 에너지 보존 법칙에 따라 방탄 장갑의 에너지 흡수를 고려하는 것이 타당하다고 판단하여 ANSYS AUTODYN 모듈을 이용하여 피탄 해석을 수행한 후 탄환의 잔류 속도와 잔류 에너지를 계산하여 배열 순서에 따른 적층 평판의 방탄 성능을 상대적으로 비교하였다.

고속 충돌 해석의 경우 안정적인 해석을 위해 아주 작은 시 간 증분을 사용하므로 일반적인 소성 해석과 비교하여 긴 해석 시간이 소요된다. 따라서 본 연구에서는 적층 평판의 배열 설

Fig. 4 A schematic diagram of ballistic simulation

계를 수행하는 군 산업계 엔지니어의 입장을 가정하여 파손 현 상의 충분한 파악이 가능한 수준에서 시간 증분 값을 결정하였 다. 공학적인 관점에서 안정적인 해석 및 정확성을 위해 라그 랑지 솔버(Lagrange solver) 방법을 사용하였다. 본 연구에서 는 재료 요소의 변형률 한도와 파손 한도를 모두 고려하여 침 식(erosion)이 발생하도록 하였다. 특히 해석 모듈에서 설정된 변형률 한도의 기본 값인 1.5를 2로 증가시켰다. 이는 재료 요 소의 침식이 변형률 한도보다 파손 한도에 좀 더 의존하는 현 실적인 충돌 거동을 가능케 함과 동시에 수치해석적 측면에서 안정성을 높힌다. 이를 통해 요소의 엉킴 현상을 방지하면서 재료의 파손 기준을 고려하는 시뮬레이션이 어느 정도 가능하 다고 본 저자들은 판단하였다.

3.2 적층 배열 패턴 분석

3.2.1 U - E 배열 패턴의 영향(두께 t = 5mm)

3.1절에서 구축한 6개의 적층 배열 모델에 대해서 구성 재료 들의 두께를 t = 5mm로 설정하여 피탄 해석을 수행하였다. Fig. 5(a)는 발사체의 시간에 따른 속도 변화와 함께 충돌 초기 단계에서의 감속 결과를 보여준다. Fig. 5(b)는 발사체가 적층 평판을 관통한 후의 적층 평판의 최종 파손 형상을 보여준다. Fig. 5에서 E는 에바 폼, U는 초고분자량 폴리에틸렌 그리고 K 는 케블라를 나타낸다. Fig. 5에서 표시된 바와 같이 발사체의 잔류 속도를 기준으로 6가지 배열을 3가지 그룹으로 나누었 다. Table 2에서는 탄환의 잔류 속도와 잔류 에너지가 제공되 며 U - E 배열 패턴의 유무가 함께 표시되어 있다.

Fig. 5(a)에서의 감속 결과를 비교하면, 에바 폼을 초고분자 량 폴리에틸렌 시편의 전면재로 사용한 K - E - U 배열(빨간색 실선)과 E - U - K 배열(검정색 실선)은 발사체의 속도를 효과 적으로 줄여주지 못하는 것으로 나타났다. 하지만 K - U - E 배 열(자홍색 점선)과 U - E - K 배열(검정색 점선)과 같이 에바 폼 이 초고분자량 폴리에틸렌 시편 뒤에 위치한 경우는 우수한 방 탄 성능을 나타내는 것으로 확인되었다. 즉, 에바 폼이 전면재

Fig. 5 Ballistic simulation results with thickness t = 5 mm; (a) projectile velocity profile and (b) view of the additive plates after penetration

로 사용되기보다는 후면재로 사용되어 초고분자량 폴리에틸 렌을 보조할 경우 효과적인 방탄 성능을 가지는 것을 확인할 수 있다. 초고분자량 폴리에틸렌 후면에 배치된 에바 폼은 충 돌과정에서 초고분자량 폴리에틸렌의 섬유 직물 구조가 더 넓 은 범위에서 에너지를 흡수하여 변형될 수 있도록 에너지 분산 을 돕는다. 최종적으로 발사체의 잔류 속도와 잔류 에너지 관 접에서 방탄 성능이 가장 우수한 배열은 K - U - E 배열(자홍색 점선)임을 확인하였다. 이는 케블라가 후면보다는 전면에 위 치할 경우 U - E 배열 패턴이 잔류 속도와 잔류 에너지를 효과 적으로 줄이며 가장 우수한 방탄 성능을 가짐을 의미한다.

Stacking	Bulletproof	Residual	Residual	U - E
sequence	performance	velocity	energy	pattern
K - U - E*	High performance	589m/s	1670J	0
U - E - K		630m/s	1865J	0
E - K - U	Mid performance	690m/s	2250J	Х
U - K - E		691m/s	2135J	Х

731m/s

733m/s

2441J

2558J

Х

Х

Table 2 Bulletproof performance of 6 additive plates (t = 5mm)

* : Best bulletproof performance

K - E - U

E - U - K

3.2.2 K - U 배열 패턴의 영향(두께 t = 6.5mm)

Low performance

3.2.1절에서는 구성 재료들의 두께가 t = 5mm일 경우에 적 층 배열에 따른 방탄 성능의 경향성을 분석하였다. 따라서 비 슷한 경향이 두께가 증가할 때도 유지되는지를 검증할 필요가 있다. 이를 위해 t = 5mm에서 가장 우수한 방탄 성능을 보여준 K-U-E 배열을 기준으로, 적층 평판이 관통되지 않을 때까지 구성 재료들의 두께를 점진적으로 증가시키며 시뮬레이션을 수행하였다. 그 결과 비관통 적정 두께가 6.5mm 임을 확인하였 고, 이에 따라 t = 6.5mm에서 6가지 적층 배열에서의 시뮬레이 션 결과를 확인하였다. Fig. 6(a)는 구성 재료의 두께가 6.5mm 일 때 시간의 따른 발사체의 속도 변화를 보여주며, Fig. 6(b)는 적층 평판의 최종 파손 형상을 보여준다. Fig. 6에서 표시된 바 와 같이 발사체의 잔류 속도를 기준으로 6가지 배열들을 3가 지 그룹으로 나누었다. Table 3에서는 탄환의 잔류 속도와 잔 류 에너지가 제공되며 K - U 배열 패턴의 유무가 함께 표시되 어 있다. K - U - E 배열에서는 비관통이 발생하였으므로 따로 수치값을 표시하지 않았다.

각각의 평판 두께가 6.5mm인 경우에서는 우수한 방탄 성능 을 갖는 적층 평판은 모두 K - U 배열 패턴을 포함하는 것으로 나타났다. 이는 초고분자량 폴리에틸렌 전면에 배치된 케블라 가 취성 재료와 같은 파손 거동을 통해 후면 재료가 받는 압력 을 분산시켜 발사체의 속력을 효과적으로 감소시키는 것으로 볼 수 있다. 각각의 평판 두께가 5mm인 경우보다 각각의 평판 의 두께가 6.5mm인 경우에서 U - E 배열 패턴에 비해 K - U 배 열 패턴의 효과가 더 크게 나타나는 것은 두께가 두꺼워질수록 케블라에 의한 방탄 효과가 증대됨을 의미한다. 최종적으로 *t* = 6.5mm인 경우에서도 K - U - E 배열이 가장 우수한 방탄 성 능을 보여주는 것을 확인하였다.

Fig. 5(b)와 Fig. 6(b)에서 볼 수 있듯이 방탄 성능이 가장 우 수하였던 K - U - E 배열에서 초고분자량 폴리에틸렌의 변형 률이 가장 큰 것을 확인 할 수 있다. 또한, 성능에 따라 나눈 3가 지 그룹을 통해 초고분자량 폴리에틸렌의 변형률이 방탄 성능 과 어느 정도 비례하는 것을 확인할 수 있다. 이는 초고분자량

Fig. 6 Ballistic simulation results with thickness t = 6.5mm; (a) projectile velocity profile and (b) view of the additive plates after penetration

폴리에틸렌의 변형이 고려된 적층 평판의 방탄 성능에서 가장 중요한 요인임을 의미한다. 초고분자량 폴리에틸렌은 전면재 에 의해 발사체의 속도가 저감될수록 높은 변형률을 가지며 발 사체의 에너지를 효과적으로 흡수한다. 결론적으로 우수한 방 탄 장갑을 설계하기 위해서는 K - U 배열 패턴과 U - E 배열 패 턴을 포함하는 것이 유리하다. 또한, 구성 재료의 두께가 두꺼 울수록 케블라에 의한 발사체의 속도 저감 효과가 커지므로 K - U 배열 패턴을 통해 방탄 장갑의 성능을 크게 향상시킬 수 있 다.

4. 결 론

본 연구에서는 케블라, 초고분자량 폴리에틸렌 그리고 에바 폼을 적충하여 방탄 장갑을 구성하였고, 이를 대상으로 고속 탄환에 대한 방탄 성능을 예측하는 유한요소해석 모델을 구축 하였다. 고속 충돌을 받는 방탄 장갑의 정확한 피탄 해석을 위

Table 3 Bulletproof	performance of 6 additi	ve plates (<i>t</i> = 6.5mm)
---------------------	-------------------------	-------------------------------

Stacking	Bulletproof	Residual	Residual	K - U
sequence	performance	velocity	energy	pattern
K - U - E*	High performance	-	-	0
E - K - U		182m/s	728J	0
U - E - K	Mid performance	359m/s	843J	Х
K - E - U		428m/s	1047J	Х
E - U - K	Low performance	575m/s	1603J	Х
U - K - E		610m/s	1722J	X

* : Best bulletproof performance

해서는 적합한 재료 모델과 정확한 물성치를 사용하는 것이 중 요하다. 이에 본 연구에서는 관련 논문에서 제시된 초고분자 량 폴리에틸렌의 물성치의 적합성을 검토하여 영향성이 큰 일 부 물성치의 값을 고속 충돌 실험 결과와 비교하여 적절하게 선정하였다. 이때 12mm 두께의 초고분자량 폴리에틸렌 단일 시편의 파손 현상을 정성적 및 정량적으로 재현하는 것을 목표 로 하였으며, 이러한 접근 방식은 다른 피탄 상황을 모델링하 는 데에도 활용할 계획이다.

본 연구에서는 7.62 × 51mm NATO 탄환의 M80 탄이 856 m/s 속도로 피격체에 수직으로 충돌할 때, 최적의 방탄 성능을 갖는 적층 배열을 제시하기 위해 ANSYS AUTODYN을 이용 한 고속 충돌 시뮬레이션을 수행하였다. 3가지 재료를 사용하 여 적층 배열 순서를 변경해가며 탄환의 잔류 속도와 잔류 에 너지를 기준으로 피격체의 안정성을 보장하는 최적의 배열을 판단하였다. 동일한 두께의 적층 재료들에 대한 피탄 해석 결 과에서 초고분자량 폴리에틸렌을 기준으로 전면에는 케블라 가, 후면에는 에바 폼이 위치하는 배열이 가장 우수한 방탄 성 능을 나타내었다. 본 연구 결과는 향후 다양한 재료로 적층된 방탄 구조의 해석 연구에 활용되어 방탄 장갑의 충격 저항성과 구조적 안정성을 높이는데 기여할 것으로 예상된다.

감사의 글

이 논문은 2021년도 정부(방위사업청)의 재원으로 국방기 술진흥연구소의 지원을 받아 수행된 한양대학교 소속 저자들 의 독립적인 연구임(No. 20-407-C00-006, 착용로봇 일체형 장 갑 방호기술 개발). 한양대학교 과제 책임자이며 한양대학교 소속 저자들의 지도교수인 한양대학교 윤길호 교수는 이 연구 의 핵심 아이디어인 재료 조합에 대한 에너지 흡수 분석 아이 디어를 직접 제안하였고 논문 작성을 하였음. 이 논문의 저자 순서는 윤길호 교수가 한양대 소속 저자들의 동의를 얻어 가나 다순으로 배열하였으며 논문 기여도와 상관이 없음.

References

- Chang, L., Guo, Y., Huang, X., Xia, Y., Cai, Z. (2021) Experimental Study on the Protective Performance of Bulletproof Plate and Padding Materials under Ballistic Impact, *Mater. & Des.*, 207, p.109841.
- Chen, J., Allahdadi, F., Sun, C. (1997) A Quadratic Yield Function for Fiber-Reinforced Composites, J. Compos. Mater., 31(8), pp.788~811.
- Clegg, R., White, D., Riedel, W., Harwick, W. (2006) Hypervelocity Impact Damage Prediction in Composites: Part I-Material Model and Characterisation, *Int. J. Impact Eng.*, 33(1-12), pp.190~200.
- Grujicic, M., Glomski, P., He, T., Arakere, G., Bell, W., Cheeseman, B. (2009) Material Modeling and Ballisticresistance Analysis of Armor-grade Composites Reinforced with High-performance Fibers, *J. Mater. Eng. & Perform.*, 18, pp.1169~1182.
- Guo, G., Alam, S., Peel, L.D. (2022) An Investigation of Deformation and Failure Mechanisms of Fiber-Reinforced Composites in Layered Composite Armor, *Compos. Struct.*, 281, p.115125.
- Hazzard, M.K., Trask, R.S., Heisserer, U., Van Der Kamp, M., Hallett, S.R. (2018) Finite Element Modelling of Dyneema®

Composites: From Quasi-static Rates to Ballistic Impact, Compos. Part A: Appl. Sci. & Manuf., 115, pp.31~45.

- Lässig, T., Nguyen, L., May, M., Riedel, W., Heisserer, U., van der Werff, H., Hiermaier, S. (2015) A Non-linear Orthotropic Hydrocode Model for Ultra-high Molecular Weight Polyethylene in Impact Simulations, *Int. J. Impact Eng.*, 75, pp.110~122.
- Nguyen, L.H., Lässig, T.R., Ryan, S., Riedel, W., Mouritz, A.P., Orifici, A.C. (2016) A Methodology for Hydrocode Analysis of Ultra-high Molecular Weight Polyethylene Composite under Ballistic Impact, *Compos. Part A: Appl. Sci. & Manuf.*, 84, pp.224~235.
- Pundhir, N., Pathak, H., Zafar, S. (2021) Ballistic Impact Performance of Ultra-high Molecular Weight Polyethylene (UHMWPE) Composite Armour, *Sādhanā*, 46, pp.1~15.
- Qu, K., Wu, C., Liu, J., Yao, Y., Deng, Y., Yi, C. (2020) Ballistic Performance of Multi-Layered Aluminium and UHMWPE Fibre Laminate Targets Subjected to Hypervelocity Impact by Tungsten Alloy Ball, *Compos. Struct.*, 253, p.112785.
- Tham, C., Tan, V., Lee, H.-P. (2008) Ballistic Impact of a KEVLAR® Helmet: Experiment and Simulations, *Int. J. Impact Eng.*, 35(5), pp.304~318.

요 지

현대의 방탄 장갑은 우수한 관통 저항성을 갖추어야할 뿐만 아니라 군인과 군용차량의 기동성이 확보되어야 하기 때문에 경량화가 중요한 개발 요소가 되었다. 이종 적층 평판 구조의 방탄 장갑의 방탄 성능은 동일 중량 대비 구성 재료의 배열에 따라 달라진다. 본 논 문에서는 케블라, 초고분자량 폴리에틸렌 그리고 에바 폼으로 구성된 방탄 장갑의 적층 배열에 따른 방탄 성능을 분석한다. 구성 재료 의 두께가 5mm와 6.5mm인 두 가지 경우에서 6가지 적층 배열에 대하여 7.62 × 51mm NATO 탄환의 M80 탄을 856m/s의 속도로 층돌 시키는 피탄 해석을 수행하였다. 방탄 성능을 평가하기 위해 이종 적층 평판을 관통한 발사체의 잔류 속도와 잔류 에너지를 측정하였 다. 시뮬레이션 결과를 통해 케블라, 초고분자량 폴리에틸렌, 에바 폼의 배열 순서를 갖는 적층 구조가 동일 중량에 대해 가장 우수한 방탄 성능을 가짐을 확인하였다.

핵심용어 : 피탄 해석, 케블라, 초고분자량 폴리에틸렌, 에바 폼, 적층 평판, 적층 배열