DOI QR코드

DOI QR Code

Impact Tensile Properties and Intergranular Fracture Behavior with Strain Rate Variations of Al-M g-X (X = Cr,Si) Alloy

  • Chang-Suk Han (Department of ICT Automotive Engineering, Hoseo University) ;
  • Min-Gyu Chun (Department of ICT Automotive Engineering, Hoseo University) ;
  • Sung-Soon Park (Department of ICT Automotive Engineering, Hoseo University) ;
  • Seung-In Lim (Department of ICT Automotive Engineering, Hoseo University)
  • Received : 2024.05.23
  • Accepted : 2024.06.25
  • Published : 2024.07.27

Abstract

Al-Mg-Si alloys are light weight and have excellent corrosion resistance, and are attracting attention as a liner material for high-pressure hydrogen containers in hydrogen fuel cell vehicles. Because it has excellent plastic hardening properties, it is also applied to car body panel materials, but it is moderate in strength, so research to improve the strength by adding Si-rich or Cu is in progress. So far, the authors have conducted research on the intergranular fracture of alloys with excessive Si addition from the macroscopic mechanical point of view, such as specimen shape. To evaluate their impact tensile properties, the split-Hopkinson bar impact test was performed using thin plate specimens of coarse and fine grain alloys of Al-Mg-X (X = Cr,Si) alloy. The effect of the shape of the specimen on the characteristics was studied through finite element method (FEM) analysis. As a result, it was found that the intergranular fracture of the alloy with excessive Si depended on the specimen width (W)/grain size (d), which can be expressed by the specimen size and grain size. As W/d decreases, the intergranular fracture transforms into a transgranular fracture. As the strain rate increases, the fracture elongation decreases, and the fracture surface of the intergranular fracture becomes more brittle. It was confirmed that intergranular fracture occurred in the high strain rate region even in materials with small grain sizes.

Keywords

Acknowledgement

This research was supported by the Academic Research Fund of Hoseo University in 2023 (2023-0494-01).

References

  1. P. Singh, P. Biswas and S. D. Kore, J. Ship Prod. Des., 35, 69 (2019).
  2. T. Soysal and S. Kou, J. Mater. Process. Technol., 266, 421 (2019).
  3. X. Dong, H. Yang, X. Zhu and S. Ji, J. Alloys Compd., 773, 86 (2019).
  4. L. Xu and X. Liu, Mech. Syst. Signal Process., 152, 107485 (2021).
  5. T. Marco, T. Sara, R. Alessandro and M. Alberto, Appl. Sci., 10, 6193 (2020).
  6. A. Kalinenko, I. Vysotskii, S. Malopheyev, S. Mironov and R. Kaibyshev, Mater. Sci. Eng., A, 817, 141409 (2021).
  7. Y. Ma, S. Niu, H. Liu, Y. Li and N. Ma, J. Mater. Sci. Technol., 82, 80 (2021).
  8. H. Quan and R. C. Alderliesten, Eng. Fract. Mech., 252, 107765 (2021).
  9. K. Ogawa, J. Jpn. Inst. Light Met., 51, 175 (2001).
  10. K. Ogawa, J. Jpn. Inst. Light Met., 52, 131 (2002).
  11. K. Wang, J. E. Carsley, L. Zhang, T. B. Stoughton, J. Li and B. E. Carlson, Int. J. Mech. Sci., 82, 13 (2014).
  12. T. A. Bennett, R. H. Petrov and L. Kestens, Mater. Sci. Forum, 715-716, 685 (2012).
  13. C. Phongphisutthinan, H. Tezuka and T. Sato, Mater. Trans., 52, 834 (2011).
  14. Z. Johan and M. Rolf, Mater. Des., 29, 1540 (2008).
  15. Y. C. Tzeng, R. Y. Chen and S. L. Lee, Mater. Chem. Phys., 259, 124202 (2021).
  16. W. Huo, J. Hu, H. Cao, Y. Du, W. Zhang and Y. Zhang, J. Alloys Compd., 781, 680 (2019).
  17. Y. Li, S. Qiu, Z. Zhu, D. Han, J. Chen and H. Chen, Int. J. Fatigue, 100, 105 (2017).
  18. Z. Johan and M. Rolf, Mater. Des., 29, 1540 (2008).
  19. Y. Zhang, H. Zhao and F. Liu, Mater. Charact., 176, 111117 (2021).
  20. C. Li, K. Liu and X. G. Chen, J. Mater. Sci. Technol., 39, 135 (2020).
  21. R. Prillhofer, G. Rank, J. Berneder, H. Antrekowitsch, P. J. Uggowitzer and S. Pogatscher, Materials, 7, 5047 (2014).
  22. J. K. Sunde, C. D. Marioara and R. Holmestad, Mater. Charact., 160, 110087 (2020).
  23. V. Babu, Shanmugavel, P. Balasivanandha and K. A. Padmanabhan, J. Mater. Eng. Perform., 29, 8049 (2020).
  24. M. X. Guo, J. Zhu, Y. Zhang, G. J. Li, T. Lin, J. S. Zhang and L. Z. Zhuang, Mater. Charact., 132, 248 (2017).
  25. H. Li, P. Zhao, Z. Wang, Q. Mao, B. Fang, R. Song and Z. Zheng, Corros. Sci., 107, 113 (2016).
  26. F. Cao, Z. Li, N. Zhang, H. Ding, F. Yu and L. Zuo, Mater. Sci. Eng., A, 571, 167 (2013).
  27. C. S. Han and C. W. Lee, J. Korean Soc. Heat Treat., 36, 77 (2023).
  28. N. Nakagawa, R. Kawai and N. Urushi, Trans. Jpn. Soc. Mech. Eng., Ser. C, 52, 3010 (1986).
  29. A. Yavari and H. Mohammad, Proc. Inst. Mech. Eng., Part C, 233, 1721 (2019).
  30. H. Toda, N. Inoue, R. Shinmura and T. Kobayashi, J. Jpn. Inst. Met., 59, 925 (1995).
  31. S. Miyazaki, K. Shibata and H. Fujita, Acta Metall., 27, 855 (1979).
  32. H. Drar and A. Bergmark, Eng. Fract. Mech., 46, 225 (1993).
  33. X. Z. Hu and F. H. Wittmann, Mater. Struct., 25, 319 (1992).
  34. B. M. Girish, B. M. Satish and K. Mahesh, Int. J. Mater. Res., 101, 1538 (2010).