• Title/Summary/Keyword: Light load operation

Search Result 112, Processing Time 0.029 seconds

Induction Motor with Adjustable Windings for High Efficiency Drive in Light Load Operation

  • Zhang, Y.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.508-513
    • /
    • 2014
  • Heavy load start but light load operation is a common case in practical drive applications. When an induction motor is employed for such applications, its rated power is usually chosen according to the heavy load start. Then, during light load operation, its efficiency and power factor are low. To solve this problem, it is proposed to adjust the motor windings from the startup to the normal operation conditions. In this paper, arrangement of the adjustable windings is introduced, air gap field with different windings is investigated, and steady state operation performance under various loads is examined. It can be seen that by using proper winding arrangement both startup and operation performances are satisfactory.

Short-Term Load Forecast for Summer Special Light-Load Period (하계 특수경부하기간의 단기 전력수요예측)

  • Park, Jeong-Do;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.482-488
    • /
    • 2013
  • Load forecasting is essential to the economical and the stable power system operations. In general, the forecasting days can be classified into weekdays, weekends, special days and special light-load periods in short-term load forecast. Special light-load periods are the consecutive holidays such as Lunar New Years holidays, Korean Thanksgiving holidays and summer special light-load period. For the weekdays and the weekends forecast, the conventional methods based on the statistics are mainly used and show excellent results for the most part. The forecast algorithms for special days yield good results also but its forecast error is relatively high than the results of the weekdays and the weekends forecast methods. For summer special light-load period, none of the previous studies have been performed ever before so if the conventional methods are applied to this period, forecasting errors of the conventional methods are considerably high. Therefore, short-term load forecast for summer special light-load period have mainly relied on the experience of power system operation experts. In this study, the trends of load profiles during summer special light-load period are classified into three patterns and new forecast algorithms for each pattern are suggested. The proposed method was tested with the last ten years' summer special light-load periods. The simulation results show the excellent average forecast error near 2%.

Study on Performance of Adaptive Maximum Torque Per Amp Control in Induction Motor Drives at Light Load Operation

  • Kwon, Chun-Ki;Kong, Yong-Hae;Kim, Dong-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.249-255
    • /
    • 2017
  • Efficient operation of induction motor at light loads has been getting wide attention recently because the operating of induction motor at light loads occupies big portion of its operating regions in many applications such as environment friendly vehicle. As one of approaches to improve efficiency, Adaptive Maximum Torque Per Amp (Adaptive MTPA) control for induction motor drives has been proposed to achieve a desired torque with the minimum possible stator current. However, the Adaptive MTPA control was validated only at heavy load where, in general, control scheme tends to perform better than at light loads since the error in measurement of sensors is lower and signal to noise is better. Thus, although the performance of a control scheme is good at rated operating point, its performance at light load is somewhat in doubt in practice. This has led to considerable interest in efficiency of Adaptive MTPA control at light loads. This work experimentally demonstrates performance of Adaptive MTPA control at light loads regardless of rotor resistance variation, thus showing its good performance over all operating conditions.

A 40-W Flyback Converter with Dual-Operation Modes for Improved Light Load Efficiency

  • Kang, Jin-Gyu;Park, Jeongpyo;Gong, Jung-Chul;Yoo, Changsik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.4
    • /
    • pp.493-500
    • /
    • 2015
  • A flyback converter operates with either pulse width modulation (PWM) or pulse frequency modulation (PFM) control scheme depending on the load current. At light load condition, PFM control is employed to reduce the switching frequency and thereby minimize the switching power loss. For heavier load, PWM control is used to regulate the output voltage of the flyback converter. The flyback controller has been implemented in a $0.35{\mu}m$ BCDMOS process and applied to a 40-W flyback converter. The light-load power efficiency of the flyback converter is improved up to 5.7-% comparing with the one operating with a fixed switching frequency.

A Continuous Conduction mode/Critical Conduction Mode Active Power Factor Correction Circuit with Input Voltage Sensor-less Control (입력전압을 감지하지 않는 전류연속/임계동작모드 Active Power Factor Correction Circuit)

  • Roh, Yong-Seong;Yoo, Changsik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.151-161
    • /
    • 2013
  • An active power factor correction (PFC) circuit is presented which employs a newly proposed input voltage sensor-less control technique operated in continuous conduction mode (CCM) and critical conduction mode (CRM). The conventional PFC circuit with input voltage sensor-less control technique degrades the power factor (PF) under the light load condition due to DCM operation. In the proposed PFC circuit, the switching frequency is basically 70KHz in CCM operation. In light load condition, however, the PFC circuit operates in CRM and the switching frequency is increased up to 200KHz. So CCM/CRM operation of the PFC circuit alleviates the decreasing of the PF in light load condition. The proposed PFC controller IC has been implemented in a $0.35{\mu}m$ BCDMOS process and a 240W PFC prototype is built. Experimental results shows the PF of the proposed PFC circuit is improved up to 10% from the one employing the conventional CCM/DCM dual mode control technique. Also, the PF is improved up to 4% in the light load condition of the IEC 61000-3-2 Class D specifications.

A Conduction Band Control AC-DC Buck Converter for a High Efficiency and High Power Density Adapter (고효율, 고전력밀도 아답터를 위한 도통밴드 제어 AC-DC 벅 컨버터)

  • Moon, SangCheol;Chung, Bonggeun;Koo, Gwanbon
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.38-39
    • /
    • 2017
  • This paper proposes a new control method for an AC-DC Buck converter which is utilized as a front-end converter of a 2-stage high power density adapter. In the conventional adapter applications, 2-stage configuration shows higher power transfer efficiency and higher power density than those of the single stage flyback converter. In the 2-stage AC-DC converter, the boost converter is widely used as a front-end converter. However, an efficiency variation between high AC line and low AC line is large. On the other hand, the proposed conduction band control method for a buck front-end converter has an advantage of small efficiency variation. In the proposed control method, switching operation is determined by a band control voltage which represents output load condition, and an AC line voltage. If the output load increasesin low AC line, the switching operation range is expanded in half of line cycle. On the contrary, in light load and high line condition, the switching operation is narrowed. Thus, the proposed control method reduces switching loss under high AC line and light load condition. A 60W prototype which is configured the buck and LLC converter with the proposed control method is experimented on to verify the validity of the proposed system. The prototype shows 92.16% of AC-DC overall efficiency and 20.19 W/in 3 of power density.

  • PDF

High Efficiency Design Procedure of a Second Stage Phase Shifted Full Bridge Converter for Battery Charge Applications Based on Wide Output Voltage and Load Ranges

  • Cetin, Sevilay
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.975-984
    • /
    • 2018
  • This work presents a high efficiency phase shifted full bridge (PSFB) DC-DC converter for use in the second stage of a battery charger for neighborhood electrical vehicle (EV) applications. In the design of the converter, Lithium-ion battery cells are preferred due to their high voltage and current rates, which provide a high power density. This requires wide range output voltage regulation for PSFB converter operation. In addition, the battery charger works with a light load when the battery charge voltage reaches its maximum value. The soft switching of the PSFB converter depends on the dead time optimization and load condition. As a result, the converter has to work with soft switching at a wide range output voltage and under light conditions to reach high efficiency. The operation principles of the PSFB converter for the continuous current mode (CCM) and the discontinuous current mode (DCM) are defined. The performance of the PSFB converter is analyzed in detail based on wide range output voltage and load conditions in terms of high efficiency. In order to validate performance analysis, a prototype is built with 42-54 V / 15 A output values at a 200 kHz switching frequency. The measured maximum efficiency values are obtained as 94.4% and 76.6% at full and at 2% load conditions, respectively.

Safety Evaluation of Elevated Guideway during Abnormal Operation on LRT of Driverless Automatic Driving System (무인자동운전 경전철시스템 고가교량의 비상운전 중 안전성평가)

  • Son Eun-Jin;Kim Min-Soo;Lim Young-Su;Lim Jong-Pil
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.1 s.32
    • /
    • pp.29-35
    • /
    • 2006
  • Trains in LRT(Light Railway Transit) system usually have shorter car length than metro's because of their smaller passensers demand. Therefore it is very likely that the load condition of LRT system in abnormal operation, in case of which trains are in close proximity by system broke or train rescue works, could be worse rather than in normal operation, in spite of rare probability of abnormal operation. In this study, the target reliability indexes of several abnormal operations are estimated in accordance with the occurrence probabilities of each abnormal operation case and the reliability index of normal operation presented by the specification. From the indexes, load factors for the abnormal operation cases are estimated and the safety evaluation is performed for Yong-in LRT project.

High Efficiency Operation of the IPT converter with Full and Half bridge Control for Electric Vehicles (전기자동차용 IPT 컨버터의 풀브릿지-하프브릿지 제어를 통한 고효율 운전 방법)

  • Ann, Sang-Joon;Joo, Dong-Myoung;Kim, Min-Kook;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.5
    • /
    • pp.423-430
    • /
    • 2017
  • This paper proposes a control methodology for a high efficiency operation of an inductive power transfer (IPT) converter by combining full bridge (FB) and half bridge (HB) controls. To apply the proposed control to the IPT converter, the characteristics of each control method are analyzed. By examining the output voltages of the IPT converter and a theoretical loss analysis, the control shifting points between FB and HB controls are evaluated in accordance with the coupling coefficients and the load. Based on the control shifting points, the FB-HB control algorithm is implemented. By applying FB-HB control, high efficiency operation at the light load condition can be achieved.

A Wide Input Range, 95.4% Power Efficiency DC-DC Buck Converter with a Phase-Locked Loop in 0.18 ㎛ BCD

  • Kim, Hongjin;Park, Young-Jun;Park, Ju-Hyun;Ryu, Ho-Cheol;Pu, Young-Gun;Lee, Minjae;Hwang, Keumcheol;Yang, Younggoo;Lee, Kang-Yoon
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2024-2034
    • /
    • 2016
  • This paper presents a DC-DC buck converter with a Phase-Locked Loop (PLL) that can compensates for power efficiency degradation over a wide input range. Its switching frequency is kept at 2 MHz and the delay difference between the High side driver and the Low side driver can be minimized with respect to Process, Voltage and Temperature (PVT) variations by adopting the PLL. The operation mode of the proposed DC-DC buck converter is automatically changed to Pulse Width Modulation (PWM) or PWM frequency modes according to the load condition (heavy load or light load) while supporting a maximum load current of up to 1.2 A. The PWM frequency mode is used to extend the CCM region under the light load condition for the PWM operation. As a result, high efficiency can be achieved under the light load condition by the PWM frequency mode and the delay compensation with the PLL. The proposed DC-DC buck converter is fabricated with a $0.18{\mu}m$ BCD process, and the die area is $3.96mm^2$. It is implemented to have over a 90 % efficiency at an output voltage of 5 V when the input range is between 8 V and 20 V. As a result, the variation in the power efficiency is less than 1 % and the maximum efficiency of the proposed DC-DC buck converter with the PLL is 95.4 %.