DOI QR코드

DOI QR Code

A Continuous Conduction mode/Critical Conduction Mode Active Power Factor Correction Circuit with Input Voltage Sensor-less Control

입력전압을 감지하지 않는 전류연속/임계동작모드 Active Power Factor Correction Circuit

  • Roh, Yong-Seong (Department of Electronics and Computer Engineering, Hanyang University) ;
  • Yoo, Changsik (Department of Electronics and Computer Engineering, Hanyang University)
  • 노용성 (한양대학교 전자컴퓨터통신공학과) ;
  • 유창식 (한양대학교 전자컴퓨터통신공학과)
  • Received : 2013.06.18
  • Published : 2013.08.15

Abstract

An active power factor correction (PFC) circuit is presented which employs a newly proposed input voltage sensor-less control technique operated in continuous conduction mode (CCM) and critical conduction mode (CRM). The conventional PFC circuit with input voltage sensor-less control technique degrades the power factor (PF) under the light load condition due to DCM operation. In the proposed PFC circuit, the switching frequency is basically 70KHz in CCM operation. In light load condition, however, the PFC circuit operates in CRM and the switching frequency is increased up to 200KHz. So CCM/CRM operation of the PFC circuit alleviates the decreasing of the PF in light load condition. The proposed PFC controller IC has been implemented in a $0.35{\mu}m$ BCDMOS process and a 240W PFC prototype is built. Experimental results shows the PF of the proposed PFC circuit is improved up to 10% from the one employing the conventional CCM/DCM dual mode control technique. Also, the PF is improved up to 4% in the light load condition of the IEC 61000-3-2 Class D specifications.

본 논문에서는 입력전압을 감지하지 않는 전류연속/임계동작모드 active power factor correction(PFC) circuit을 제안하였다. 기존의 입력전압을 감지하지 않는 PFC circuit의 경우 출력전류가 낮은 경 부하 조건에서 DCM 동작을 수행하고, 이에 따라 PF가 감소하는 문제가 발생한다. 제안한 PFC circuit은 70KHz의 주파수로 CCM 동작을 수행하고, 경 부하 조건에서 최대 200KHz까지 스위칭 주파수가 가변되는 CRM 동작을 수행하도록 하였다. 이를 통해 경 부하 조건에서 PF가 감소하는 문제를 해결하였다. PFC controller IC는 $0.35{\mu}m$ BCDMOS 공정을 이용하여 제작하였으며, 240W급 PFC prototype을 제작하여 실험하였다. 제안한 PFC circuit은 기존의 PFC circcuit 대비 최대 10%의 역률이 향상되었고, IEC 61000-3-2 Class D 규격에 따른 경 부하 조건에서는 최대 4% 역률이 향상되었다.

Keywords

References

  1. R. W. Erickson and D. Maksimovic, Fundamental of Power Electronics, 2nd ed., Kluwer Academic Pub., pp 609-630, 2001.
  2. J. Lai and D. Chen, "Design consideration for power factor correction boost converter operating at the boundary of continuous conduction mode and discontinuous conduction mode," in Proceedings of IEEE Applied Power Electronics Conference and Exposition, pp. 267-273, San Diego, CA., Mar. 1993.
  3. S. Buso, P. Mattavelli, L. Rossetto, and G. Spiazzi, "Simple digital control improving dynamic performance of power factor preregulators," IEEE Trans. Power Electronics, vol. 13, no. 5, pp. 814-823, Sep. 1998. https://doi.org/10.1109/63.712280
  4. F. Chen and D. Maksimovic, "Digital Control for Improved Efficiency and Reduced Harmonic Distortion over Wide Load Range in Boost PFC Rectifiers," In Proc. Of IEEE Applied Power Electronics Conference and Exposition, pp.760-766, Washington, DC., Feb. 2009.
  5. 전인선, 김형우, 김기현, 서길수, 조효문, 이종화, "단일 역률 달성을 위한 Boost Converter용 PFC IC 설계," 전자공학회논문지, 제47권 SD편, 제2호, 60-67쪽, 2010년 2월.
  6. H.-P. Le, C.-S. Chae, M.-C. Lee, S.-W. Wang, S.-I. Kim, and G.-H. Cho, "Integrated zeroinductor- current detection circuit for step-up DC-DC converters," IET Electronics Letters, vol. 42, no. 16, pp. 943-944, Aug. 2006. https://doi.org/10.1049/el:20061289
  7. Sivakumar S., Natarajan K., and Gudelewicz R. "Control of Power Factor Correcting Boost Converter Without Instantaneous Measurement of Input Current," IEEE Trans. Power Electronics, vol. 10, no. 4, pp. 435-445, Jul. 1995. https://doi.org/10.1109/63.391941
  8. S. Bhowmik, A. van Zyl, R. Spee, and J. H. R. Enslin, "Sensorless Current Control for Active Rectifiers," IEEE Trans. Ind. Applicat., vol. 33, no. 3, pp. 765-773, May./Jun. 1997. https://doi.org/10.1109/28.585867
  9. Y. S. Roh, Y. J. Moon, J. C. Gong, and C. Yoo, "Active power factor correction (PFC) circuit with resistor-free zero-current detection," IEEE Trans. Power Electronics, vol. 26, no. 2, pp. 630 -637, Feb. 2011. https://doi.org/10.1109/TPEL.2010.2070080
  10. T. O, and M. Hojo, "DC Voltage Sensorless Single-Phase PFC Converter," IEEE Trans. Power Electronics, vol. 19, no. 2, pp. 404-410, Mar., 2004. https://doi.org/10.1109/TPEL.2003.823191
  11. P. Mattavelli, G. Spiazzi, and P. Tenti, "Predictive digital control of Power factor preregulators with input voltage estimation using disturbance observers," IEEE Trans. Power Electronics, vol. 20, no. 1, pp. 140-147, Jan. 2005. https://doi.org/10.1109/TPEL.2004.839821
  12. W. Stefanutti, P. Mattavelli, G. Spiazzi, and P. Tenti, "Digital control of single-phase power factor preregulators based on current and voltage sensing at switch terminals," IEEE Trans. Power Electronic, vol. 21, no. 5, pp. 1356-1363, Sep. 2006. https://doi.org/10.1109/TPEL.2006.880278
  13. K. De Gusseme, D. M. Van de Sype, A. P. M. Van den Bossche, and J. A. Melkebeek, "Input-Current Distortion of CCM Boost PFC Converters Operated in DCM," IEEE Trans. Ind. Electronics, vol. 54, no. 2, pp. 858-865, Apr. 2007. https://doi.org/10.1109/TIE.2007.892252
  14. 서길수, 김형우, 김기현, 박현일, 김남균, 박주성, "Zero Cross Detection Power factor Correction IC 설계," 대한전자공학회 하계종합학술대회 논문집, 519-520쪽, 2008년.