• Title/Summary/Keyword: Lifting Power

Search Result 97, Processing Time 0.023 seconds

Biomechanical Analysis of Lower Limb Joint Motions and Lumbar Lordosis during Squat and Stoop Lifting (쪼그려 들기와 허리 굽혀 들기 시 하지관절 움직임과 요추 전만에 관한 생체역학적 분석)

  • Hwang, Seon-Hong;Kim, Young-Eun;Kim, Young-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.11
    • /
    • pp.107-118
    • /
    • 2008
  • In this study, lower extremity joint kinematics and kinetics and lumbar lordosis were investigated for two different symmetrical lifting techniques(squat and stoop) using the three-dimensional motion analysis. Twenty-six male volunteers lifted boxes weighing 5, 10 and 15kg by both squat and stoop lifting techniques. There were not significant differences in maximum lumbar joint moments between the two techniques. The hip and ankle contributed the most part of the support moments during squat lifting, and the knee flexion moment played an important role in stoop lifting. The hip, ankle and lumbar joints generated power and only the khee joint absorbed power in the squat lifting. The knee and ankle joints absorbed power, the hip and lumbar joints generated power in the stoop lifting. The bi-articular antagonist muscles' co-contraction around the knee joint during the squat lifting and the eccentric co-contraction of the gastrocnemius and semitendinosus were found to be important for straightening up during the stoop lifting. At the time of lordotic curvature appearance in the squat lifting, there were significant correlations in all three lower extremity joint moments with the lumbar joint. Differently, only the hip moment had significant correlation with the lumbar joint in the stoop lifting. In conclusion, the knee extension which is prominent kinematics during the squat tilling was produced by the contributions of the kinetic factors from the hip and ankle joints(extensor moment and power generation) and the lumbar extension which is prominent kinematics during the stoop lifting could be produced by the contributions of the knee joint kinetic factors(flexor moment, power absorption, bi-articular muscle function).

The Study on Designing and Making Power Lifting Wheelchair using Mecanum Wheels (메카넘 바퀴를 적용한 리프팅 휠체어의 설계 및 제작에 관한 연구)

  • Jo, Jang-Hyen;Hwang, Byung-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.2
    • /
    • pp.211-218
    • /
    • 2011
  • We reported the design, prototype, test drive, and mechanical & electrical engineering analyses of a power-lifting wheelchair using mecanum wheels. Mecanum wheels enable translational and rotational movement of the device in any direction on the ground. The power-lifting capability enables the seated individual to reach the standing height of a non-disabled individual. This mecanum wheelchair is fully controlled by the joystick attached to the armrest. The motion of the wheelchair and lifting action of the seat were studied using statics and dynamics. We believe this mecanum wheelchair is a prime candidate for commercial production.

Technical Development Status and Market Prospects for High Altitude Wind Power Generation System (공중 풍력발전 기술개발 현황 및 시장전망)

  • Kang, Seung-Won;Gil, Doo-Song;Park, Dong-Su;Jung, Won-Seoup;Kim, Eui-Hwan
    • New & Renewable Energy
    • /
    • v.7 no.2
    • /
    • pp.36-42
    • /
    • 2011
  • The wind speed at the altitude around 300 m is much higher and less variable than at the altitude around 80 m which is the same height of the MW class tower turbine's hub height. The wind power density is increased 0.37 W/$m^2$ per meter at the altitude around 6 to 7 km and 0.25 W/$m^2$ per meter at the altitude around 80 to 500 m. There are two types of power generation systems using lifting bodies. The one is that The generator is installed in the ground station and stretched into the lifting body through the tether. The other is that the generator is installed in the lifting body and stretched into the ground station through the tether. Many kinds of lifting bodies are also researched in the world, called kites, wings, single or twin aerostat, and so on. This article introduced the technical development status and the market prospects of the high altitude wind power generation system all over the world in detail.

Stability and parameters influence study of fully balanced hoist vertical ship lift

  • Cheng, Xionghao;Shi, Duanwei;Li, Hongxiang;Xia, Re;Zhang, Yang;Zhou, Ji
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.583-594
    • /
    • 2018
  • A theoretical formulation based on the linearized potential theory, the Descartes' rule and the extremum optimization method is presented to calculate the critical distance of lifting points of the fully balanced hoist vertical ship lift, and to study pitching stability of the ship lift. The overturning torque of the ship chamber is proposed based on the Housner theory. A seven-free-degree dynamic model of the ship lift based on the Lagrange equation of the second kind is then established, including the ship chamber, the wire rope, the gravity counterweights and the liquid in the ship chamber. Subsequently, an eigenvalue equation is obtained with the coefficient matrix of the dynamic equations, and a key coefficient is analyzed by innovative use of the minimum optimization method for a stability criterion. Also, an extensive influence of the structural parameters contains the gravity counterweight wire rope stiffness, synchronous shaft stiffness, lifting height and hoists radius on the critical distance of lifting points is numerically analyzed. With the Runge-Kutta method, the four primary dynamical responses of the ship lift are investigated to demonstrate the accuracy/reliability of the result from the theoretical formulation. It is revealed that the critical distance of lifting points decreases with increasing the synchronous shaft stiffness, while increases with rising the other three structural parameters. Moreover, the theoretical formulation is more applicable than the previous criterions to design the layout of the fully balanced hoist vertical ship lift for the ensuring of the stability.

Development of a hydraulic power transmission system for the 3-point hitch of 50-kW narrow tractors

  • Chung, Sun-Ok;Kim, Yong-Joo;Choi, Moon-Chan;Lee, Kyu-Ho;Ha, Jong-Kyou;Kang, Tae-Kyoung;Kim, Young-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.3
    • /
    • pp.450-458
    • /
    • 2016
  • High performance small and mid-sized tractors are required for dryland and orchard operations. A power transmission system is the most important issue for the design of high performance tractors. Many operations, such as loading and lifting, use hydraulic power. In the present study, a hydraulic power transmission system for the 3-point hitch of a 50 kW narrow tractor was developed and its performance was evaluated. First, major components were designed based on target design parameters. Target operations were spraying, weeding, and transportation. Main design parameters were determined through mathematical calculation and computer simulation. The capacity of the hydraulic cylinder was calculated taking the lifting force required for the weight of the implements into consideration. Then, a prototype was fabricated. Major components were the lifting valve, hydraulic cylinder, and 3-point hitch. Finally, performance was evaluated through laboratory tests. Tests were conducted using load weights, lift arm sensor, and lift arm height from the ground. Test results showed that the lifting force was in the range of 23.5 - 29.4 kN. This force was greater than lifting forces of competing foreign tractors by 3.9 - 4.9 kN. These results satisfied the design target value of 20.6 kN, determined by survey of advanced foreign products. The prototype will be commercialized after revision based on various field tests. Improvement of reliability should be also achieved.

The test methods of Lifting performance and Environmental resistance tests using power assist device for a fireman to rescue humans (인명구조용 소방대원 근력지원장치의 양중성능 및 내환경 시험 방법)

  • Lee, Minsu;Park, Chan;Lee, Seonmin;Lee, Dongeun
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.3
    • /
    • pp.358-365
    • /
    • 2017
  • As the damage caused by disasters increases rapidly around the world, it is necessary to develop the technology for equipment to reduce human injury. Therefore in the support of fire safety and 119 rescue and rescue technology research and development project, in the "Development of a power assist device for a fireman to rescue humans(2015 ~ 2018)" for life saving restoration, we are developing equipment that satisfies the lifting performance considering the disaster environment and the disaster response scenario(Amount of load over 100 kg, height of over 1 m, height over middle 60 cm, speed over 0.2 m/s). In this study, we propose a lifting performance and environmental test method to evaluate the usefulness of the power-assisted device and analyze and verify detailed specifications of the device through dynamics analysis of the lifting performance test. This study suggests that the proposed test method can be applied practically to evaluate whether a stable performance of a power-assisted device is achieved.

Dynamic Analysis of Topside Module in Lifting Installation Phase

  • Lee, Jong-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.7-11
    • /
    • 2011
  • The installation phase for a topside module suggested can be divided into 9 stages, which include start, pre-lifting, lifting, lifted, rotating, positioning, lowering, mating, and end of installation. The transfer of the topside module from a transport barge to a crane vessel takes place in the first three stages, from start to lifting, while the transfer of the module onto a floating spar hull occurs in the last three stages, from lowering to the end. The coupled multi-body motions are calculated in both calm water and in irregular waves with significant wave height (1.52m), with suggested force equilibrium diagrams. The effects of the hydrodynamic interactions between the crane vessel and barge during the lifting stage have been considered. The internal forces caused by the load transfer and ballasting are derived for the lifting phases. The results of these internal forces for the calm water condition are compared with those in the irregular sea condition. Although the effect of pitch motion on the relative vertical motion between the deck of the floating structure and the topside module is significant in the lifting phases, the internal force induced pitch motion is too small to show its influence. However, the effect of the internal force on the wave-induced heave responses in the lifting phases is noticeable in the irregular sea condition because the transfer mass-induced draught changes in the floating structure are observed to have higher amplitudes than the external force induced responses.

A Study on High Impedance Fault Detection using Lifting Scheme (Lifting을 이용한 고저항고장 검출에 관한 연구)

  • Hong, D.S.;Yim, H.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2228-2230
    • /
    • 2002
  • The research presented in this paper focuses on a method for the detection of High Impedance Fault(HIF). The method will use the Lifting and neural network system. HIF on the multi-grounded three-phase four-wires primary distribution power system cannot be detected effectively by existing over current sensing devices. These paper describes the application of lifting scheme to the various HIF data. These data were measured in actual 22.9kV distribution system. Wavelet transform analysis gives the frequency and time-scale information. The neural network system as a fault detector was trained to discriminate HIF from the normal status by a gradient descent method. The proposed method performed very well by proving the right state when it was applied staged fault data and normal load mimics HIF, such as arc-welder.

  • PDF

Design of Multiplierless Lifting-based Wavelet Transform using Pattern Search Methods (패턴 탐색 기법을 사용한 Multiplierless 리프팅 기반의 웨이블릿 변환의 설계)

  • Son, Chang-Hoon;Park, Seong-Mo;Kim, Young-Min
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.7
    • /
    • pp.943-949
    • /
    • 2010
  • This paper presents some improvements on VLSI implementation of lifting-based 9/7 wavelet transform by optimization hardware multiplication. The proposed solution requires less logic area and power consumption without performance loss compared to previous wavelet filter structure based on lifting scheme. This paper proposes a better approach to the hardware implementation using Lefevre algorithm based on extensions of Pattern search methods. To compare the proposed structure to the previous solutions on full multiplier blocks, we implemented them using Verilog HDL. For a hardware implementation of the two solutions, the logical synthesis on 0.18 um standard cells technology show that area, maximum delay and power consumption of the proposed architecture can be reduced up to 51%, 43% and 30%, respectively, compared to previous solutions for a 200 MHz target clock frequency. Our evaluation show that when design VLSI chip of lifting-based 9/7 wavelet filter, our solution is better suited for standard-cell application-specific integrated circuits than prior works on complete multiplier blocks.

Correlation between Box Size and Fatigue of the Back Muscles During Lifting Action (들어올리기 동작에서 상자크기와 척추근의 상관관계)

  • Koo H. R.;Lee S. S.;Mun J. H.
    • Journal of Biosystems Engineering
    • /
    • v.29 no.6 s.107
    • /
    • pp.531-538
    • /
    • 2004
  • This study examined the muscle fatigue of the erector spinae according to box size during lifting activity. Ten healthy adult man participated in the experiment for lifting the boxes 10 times with 0.2 lift/s frequency. Bilateral surface EMG (Electomyogtamphy) recordings were made regarding M. (Muscle) Longissimus, M. Iliocostal and M, Multifidus activity throughout lifting working. The median frequency in back muscle fatigue was investigated using power spectral analysis of surface EMG. When the box larger than shoulder width was lifted, the muscle fatigue of M, Multifidus was shown larger than one of the other muscles. Accordingly, the result far M. Multifidus can be applied in optimizing design parameter of box. Also, the standard of box width for box makers have to be below about 420 mm, being average shoulder width of adult male.