• Title/Summary/Keyword: Lie triple derivation

Search Result 5, Processing Time 0.019 seconds

A NOTE ON NONLINEAR SKEW LIE TRIPLE DERIVATION BETWEEN PRIME ⁎-ALGEBRAS

  • Taghavi, Ali;Nouri, Mojtaba;Darvish, Vahid
    • Korean Journal of Mathematics
    • /
    • v.26 no.3
    • /
    • pp.459-465
    • /
    • 2018
  • Recently, Li et al proved that ${\Phi}$ which satisfies the following condition on factor von Neumann algebras $${\Phi}([[A,B]_*,C]_*)=[[{\Phi}(A),B]_*,C]_*+[[A,{\Phi}(B)]_*,C]_*+[[A,B]_*,{\Phi}(C)]_*$$ where $[A,B]_*=AB-BA^*$ for all $A,B{\in}{\mathcal{A}}$, is additive ${\ast}-derivation$. In this short note we show the additivity of ${\Phi}$ which satisfies the above condition on prime ${\ast}-algebras$.

Characterizations of Lie Triple Higher Derivations of Triangular Algebras by Local Actions

  • Ashraf, Mohammad;Akhtar, Mohd Shuaib;Jabeen, Aisha
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.4
    • /
    • pp.683-710
    • /
    • 2020
  • Let ℕ be the set of nonnegative integers and 𝕬 be a 2-torsion free triangular algebra over a commutative ring ℛ. In the present paper, under some lenient assumptions on 𝕬, it is proved that if Δ = {𝛿n}n∈ℕ is a sequence of ℛ-linear mappings 𝛿n : 𝕬 → 𝕬 satisfying ${\delta}_n([[x,\;y],\;z])\;=\;\displaystyle\sum_{i+j+k=n}\;[[{\delta}_i(x),\;{\delta}_j(y)],\;{\delta}_k(z)]$ for all x, y, z ∈ 𝕬 with xy = 0 (resp. xy = p, where p is a nontrivial idempotent of 𝕬), then for each n ∈ ℕ, 𝛿n = dn + 𝜏n; where dn : 𝕬 → 𝕬 is ℛ-linear mapping satisfying $d_n(xy)\;=\;\displaystyle\sum_{i+j=n}\;d_i(x)d_j(y)$ for all x, y ∈ 𝕬, i.e. 𝒟 = {dn}n∈ℕ is a higher derivation on 𝕬 and 𝜏n : 𝕬 → Z(𝕬) (where Z(𝕬) is the center of 𝕬) is an ℛ-linear map vanishing at every second commutator [[x, y], z] with xy = 0 (resp. xy = p).

REMARKS ON GENERALIZED JORDAN (α, β)*-DERIVATIONS OF SEMIPRIME RINGS WITH INVOLUTION

  • Hongan, Motoshi;Rehman, Nadeem ur
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.73-83
    • /
    • 2018
  • Let R be an associative ring with involution * and ${\alpha},{\beta}:R{\rightarrow}R$ ring homomorphisms. An additive mapping $d:R{\rightarrow}R$ is called an $({\alpha},{\beta})^*$-derivation of R if $d(xy)=d(x){\alpha}(y^*)+{\beta}(x)d(y)$ is fulfilled for any $x,y{\in}R$, and an additive mapping $F:R{\rightarrow}R$ is called a generalized $({\alpha},{\beta})^*$-derivation of R associated with an $({\alpha},{\beta})^*$-derivation d if $F(xy)=F(x){\alpha}(y^*)+{\beta}(x)d(y)$ is fulfilled for all $x,y{\in}R$. In this note, we intend to generalize a theorem of Vukman [12], and a theorem of Daif and El-Sayiad [6], moreover, we generalize a theorem of Ali et al. [4] and a theorem of Huang and Koc [9] related to generalized Jordan triple $({\alpha},{\beta})^*$-derivations.