A NOTE ON NONLINEAR SKEW LIE TRIPLE DERIVATION BETWEEN PRIME *-ALGEBRAS

Ali Taghavi, Mojtaba Nouri, and Vahid Darvish

ABSTRACT. Recently, Li et al proved that Φ which satisfies the following condition on factor von Neumann algebras

 $\Phi([[A,B]_*,C]_*)=[[\Phi(A),B]_*,C]_*+[[A,\Phi(B)]_*,C]_*+[[A,B]_*,\Phi(C)]_*$ where $[A,B]_*=AB-BA^*$ for all $A,B\in\mathcal{A}$, is additive *-derivation. In this short note we show the additivity of Φ which satisfies the above condition on prime *-algebras.

1. Introduction

Let \mathcal{R} be a *-ring. For $A, B \in \mathcal{R}$, denoted by $A \diamond B = AB + BA^*$ and $[A, B]_* = AB - BA^*$, which are *-Jordan product and *-Lie product, respectively. These products are found playing a more and more important role in some research topics, and its study has recently attracted many author's attention (for example, see [2, 4, 6, 7]).

Let define λ -Jordan *-product by $A \diamond_{\lambda} B = AB + \lambda BA^*$. We say the map Φ with property of $\Phi(A \diamond_{\lambda} B) = \Phi(A) \diamond_{\lambda} B + A \diamond_{\lambda} \Phi(B)$ is a λ -Jordan *-derivation map. It is clear that for $\lambda = -1$ and $\lambda = 1$, the λ -Jordan *-derivation map is a *-Lie derivation and *-Jordan derivation, respectively [1]. We should mention here whenever we say Φ preserves derivation, it means $\Phi(AB) = \Phi(A)B + A\Phi(B)$.

Received May 06, 2018. Revised July 15, 2018. Accepted July 17, 2018. 2010 Mathematics Subject Classification: 46J10, 47B48, 46L10.

Key words and phrases: Lie triple derivation, prime *-algebra, additive map.

[©] The Kangwon-Kyungki Mathematical Society, 2018.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

Recently, Yu and Zhang in [9] proved that every non-linear *-Lie derivation from a factor von Neumann algebra into itself is an additive *-derivation. Also, Li, Lu and Fang in [3] have investigated a non-linear λ -Jordan *-derivation. They showed that if $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ is a von Neumann algebra without central abelian projections and λ is a non-zero scalar, then $\Phi: \mathcal{A} \longrightarrow \mathcal{B}(\mathcal{H})$ is a non-linear λ -Jordan *-derivation if and only if Φ is an additive *-derivation.

In [8] we showed that *-Jordan derivation map (i.e., $\phi(A \diamond_1 B) = \phi(A) \diamond_1 B + A \diamond_1 \phi(B)$) on every factor von Neumann algebra $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ is additive *-derivation.

The authors of [5] introduced the concept of Lie triple derivations. A map $\Phi: \mathcal{A} \to \mathcal{A}$ is a nonlinear skew Lie triple derivations if (1.1)

 $\Phi([[A, B]_*, C]_*) = [[\Phi(A), B]_*, C]_* + [[A, \Phi(B)]_*, C]_* + [[A, B]_*, \Phi(C)]_*$ for all $A, B, C \in \mathcal{A}$ such that $[A, B]_* = AB - BA^*$. They showed that if Φ preserves the above characterizations on factor von Neumann algebras then Φ is additive *-derivation.

In this paper, we prove that if \mathcal{A} is a prime *-algebra then $\Phi : \mathcal{A} \to \mathcal{A}$ which holds in (1.1) is additive.

We say that \mathcal{A} is prime, that is, for $A, B \in \mathcal{A}$ if $A\mathcal{A}B = \{0\}$ then A = 0 or B = 0.

2. Main Results

Our main theorem is as follows:

THEOREM 2.1. Let A be a prime *-algebra with a non-trivial projection. Then the map $\Phi: A \to A$ satisfies in the following condition (2.1)

$$\Phi([[A,B]_*,C]_*) = [[\Phi(A),B]_*,C]_* + [[A,\Phi(B)]_*,C]_* + [[A,B]_*,\Phi(C)]_*$$
where $[A,B]_* = AB - \lambda BA^*$ for all $A,B,C \in \mathcal{A}$ is additive.

Proof. Let P_1 be a nontrivial projection in \mathcal{A} and $P_2 = I_{\mathcal{A}} - P_1$. Denote $\mathcal{A}_{ij} = P_i \mathcal{A} P_j$, i, j = 1, 2, then $\mathcal{A} = \sum_{i,j=1}^2 \mathcal{A}_{ij}$. For every $A \in \mathcal{A}$ we may write $A = A_{11} + A_{12} + A_{21} + A_{22}$. In all that follow, when we write A_{ij} , it indicates that $A_{ij} \in \mathcal{A}_{ij}$. For showing additivity of Φ on \mathcal{A} , we use above partition of \mathcal{A} and give some claims that prove Φ is additive on each \mathcal{A}_{ij} , i, j = 1, 2.

We prove the above theorem by several claims.

CLAIM 1. We show that $\Phi(0) = 0$.

This claim is easy to prove.

CLAIM 2. For each $A_{11} \in \mathcal{A}_{11}$ and $A_{22} \in \mathcal{A}_{22}$ we have

$$\Phi(A_{11} + A_{22}) = \Phi(A_{11}) + \Phi(A_{22}).$$

We show that

$$T = \Phi(A_{11} + A_{22}) - \Phi(A_{11}) - \Phi(A_{22}) = 0.$$

For $i \in \mathbb{C}$, we can write that

$$\begin{split} & [[\Phi(iI), P_{1}]_{*}, A_{11} + A_{22}]_{*} + [[iI, \Phi(P_{1})]_{*}, A_{11} + A_{22}]_{*} \\ & + [[iI, P_{1}]_{*}, \Phi(A_{11} + A_{22})]_{*} = \Phi([[iI, P_{1}]_{*}, A_{11} + A_{22}]_{*}) \\ & = \Phi([[iI, P_{1}]_{*}, A_{11}) + \Phi([[iI, P_{1}]_{*}, A_{22}]_{*}) \\ & = \Phi([[iI, P_{1}]_{*}, A_{11} + A_{22}]_{*}) + [[iI, \Phi(P_{1})]_{*}, A_{11} + A_{22}]_{*} \\ & + [[iI, P_{1}]_{*}, \Phi(A_{11}) + \Phi(A_{22})]_{*}. \end{split}$$

It follows that

$$[[iI, P_1]_*, T]_* = 0.$$

So,

$$T_{11} = T_{12} = T_{21} = 0.$$

Similarly, by applying the same proof for P_2 we have $T_{22} = 0$.

CLAIM 3. For each $A_{11} \in \mathcal{A}_{11}$, $A_{12} \in \mathcal{A}_{12}$, $A_{21} \in \mathcal{A}_{21}$, $A_{22} \in \mathcal{A}_{22}$ we have

$$\Phi(A_{11} + A_{12} + A_{21} + A_{22}) = \Phi(A_{11}) + \Phi(A_{12}) + \Phi(A_{21}) + \Phi(A_{22}).$$

We show that for T in \mathcal{A} the following holds (2.2)

$$T = \Phi(A_{11} + A_{12} + A_{21} + A_{22}) - \Phi(A_{11}) - \Phi(A_{12}) - \Phi(A_{21}) - \Phi(A_{22}) = 0.$$

We can write

$$\begin{split} [[\Phi(P_1), (A_{11} + A_{12} + A_{21} + A_{22})]_*, P_2]_* \\ + [[P_1, \Phi(A_{11} + A_{12} + A_{21} + A_{22})]_*, P_2]_* \\ + [[P_1, (A_{11} + A_{12} + A_{21} + A_{22})]_*, \Phi(P_2]_* \\ = \Phi([[P_1, (A_{11} + A_{12} + A_{21} + A_{22})]_*, P_2]_*) \\ = \Phi([[P_1, A_{11}]_*, P_2]_*) + \Phi([[P_1, A_{12}]_*, P_2]_*) \\ + \Phi([[P_1, A_{21}]_*, P_2]_*) + \Phi([[P_1, A_{22}]_*, P_2]_*) \\ = [[\Phi(P_1), (A_{11} + A_{12} + A_{21} + A_{22})]_*, P_2]_* \\ + [[P_1, (\Phi(A_{11}) + \Phi(A_{12}) + \Phi(A_{21}) + \Phi(A_{22}))]_*, P_2]_* \\ + [[P_1, (A_{11} + A_{12} + A_{21} + A_{22})]_*, \Phi(P_2)]_*. \end{split}$$

Therefore,

$$[[P_1, T]_*, P_1]_* = 0.$$

So, $T_{12} = 0$.

Similarly, one can show that

$$[[P_2, T]_*, P_1 = 0.$$

We obtain $T_{21} = 0$. From Claim 2 we have

$$\begin{split} & [[\Phi(i(P_1-P_2),I]_*,(A_{11}+A_{12}+A_{21}+A_{22})]_* \\ & +[[i(P_1-P_2),\Phi(I)]_*,(A_{11}+A_{12}+A_{21}+A_{22})]_* \\ & +[[i(P_1-P_2),I]_*,\Phi(A_{11}+A_{12}+A_{21}+A_{22})]_* \\ & = \Phi([[i(P_1-P_2),I]_*,(A_{11}+A_{12}+A_{21}+A_{22})]_* \\ & = [\Phi(i(P_1-P_2),I]_*,(A_{11}+A_{22})]_* \\ & +\Phi([[i(P_1-P_2),I]_*,A_{12}]_*+\Phi([[i(P_1-P_2),I]_*,A_{21}]_* \\ & = \Phi(i(P_1-P_2),I]_*,A_{11}]_*+\Phi(i(P_1-P_2),I]_*,A_{22}]_* \\ & +\Phi(i(P_1-P_2,I]_*,A_{21}]_*+\Phi(i(P_1-P_2,I]_*,A_{21}]_* \\ & = \Phi(i(P_1-P_2),I]_*,(A_{11}+A_{12}+A_{21}+A_{22})]_* \\ & +[[i(P_1-P_2),\Phi(I)]_*,(A_{11}+A_{12}+A_{21}+A_{22})]_* \\ & +[[i(P_1-P_2),I]_*,(\Phi(A_{11})+\Phi(A_{12})+\Phi(A_{21})+\Phi(A_{22})]_*. \end{split}$$

So, we obtain

$$[[i(P_1 - P_2), I]_*, T]_* = 0.$$

So, $T_{11} = T_{22} = 0$.

CLAIM 4. For each $A_{ij}, B_{ij} \in \mathcal{A}_i$ such that $i \neq j$, we have $\Phi(A_{ij} + B_{ij}) = \Phi(A_{ij}) + \Phi(B_{ij}).$

It is easy to show that

$$\left[\left[i\frac{I}{2}, (P_i + A_{ij}) \right]_*, i(P_j + B_{ij}) \right]_* = A_{ij} - B_{ij} - A_{ij}^* - B_{ij} A_{ij}^*.$$

From Claim 3 we have

$$\begin{split} &-\Phi(A_{ij}+B_{ij})-\Phi(A_{ij}^*)-\Phi(B_{ij}A_{ij}^*)\\ &=\Phi\left(\left[\left[i\frac{I}{2},(P_i+A_{ij})\right]_*,i(P_j+B_{ij})\right]_*\right)\\ &+\left[\Phi\left(i\frac{I}{2}\right),(P_i+A_{ij})\right]_*,i(P_j+B_{ij})\right]_*\\ &+\left[\left[\left(i\frac{I}{2}\right),\Phi(P_i+A_{ij})\right]_*,i(P_j+B_{ij})\right]_*\\ &=\left[\left[\Phi\left(i\frac{I}{2}\right),(P_i+A_{ij})\right]_*,(P_j+B_{ij})\right]_*\\ &+\left[\left[\left(i\frac{I}{2}\right),(\Phi(P_i)+\Phi(A_{ij})\right]_*,(P_j+B_{ij})\right]_*\\ &+\left[\left[\left(i\frac{I}{2}\right),(P_i+A_{ij})\right]_*,(\Phi(iP_j)+\Phi(iB_{ij})\right]_*\\ &+\Phi\left(\left[\left(i\frac{I}{2}\right),P_i\right]_*,iP_j\right]_*\right)+\Phi\left(\left[\left(i\frac{I}{2}\right),P_i\right]_*,iB_{ij}\right]_*\right)\\ &+\Phi\left(\left[\left(i\frac{I}{2}\right),A_{ij}\right]_*,iP_j\right]_*\right)+\Phi\left(\left[\left(i\frac{I}{2}\right),A_{ij}\right]_*,iB_{ij}\right]_*\right)\\ &=-\Phi(B_{ij})-\Phi(A_{ij})-\Phi(A_{ij}^*)-\Phi(B_{ij}A_{ij}^*). \end{split}$$

So,

$$\Phi(A_{ij} + B_{ij}) = \Phi(A_{ij}) + \Phi(B_{ij}).$$

CLAIM 5. For each A_{ii} , $B_{ii} \in \mathcal{A}_{ii}$ such that $1 \leq i \leq 2$, we have $\Phi(A_{ii} + B_{ii}) = \Phi(A_{ii}) + \Phi(B_{ii})$.

We show that

$$T = \Phi(A_{ii} + B_{ii}) - \Phi(A_{ii}) - \Phi(B_{ii}) = 0.$$

We can write

$$[[\Phi(iP_{j}), I]_{*}, (A_{ii} + B_{ii})]_{*} + [[iP_{j}, \Phi(I)]_{*}, (A_{ii} + B_{ii})]_{*}$$

$$+ [[iP_{j}, I]_{*}, \Phi(A_{ii} + B_{ii})]_{*}$$

$$= \Phi([[iP_{j}, I]_{*}, A_{ii} + B_{ii}]_{*}) = \Phi([[iP_{j}, I]_{*}, A_{ii}]_{*}) + \Phi([[iP_{j}, I]_{*}, B_{ii}]_{*})$$

$$= [[\Phi(iP_{j}), I]_{*}, (A_{ii} + B_{ii})]_{*} + [[iP_{j}, \Phi(I)]_{*}, (A_{ii} + B_{ii})]_{*}$$

$$+ [[iP_{i}, I]_{*}, (\Phi(A_{ii}) + \Phi(B_{ii})]_{*}.$$

Hence

$$[[iP_j, I]_*, T]_* = 0.$$

So,
$$T_{ij} = T_{ji} = T_{jj} = 0$$
. From Claim 4 for each $C_{ij} \in \mathcal{A}_{ij}$ we have
$$[[\Phi(iP_i), (A_{ii} + B_{ii})]_*, C_{ij}]_* + [[iP_i, \Phi(A_{ii} + B_{ii})]_*, C_{ij}]_*$$

$$+ [[iP_i, (A_{ii} + B_{ii})]_*, \Phi(C_{ij})]_*] = \Phi([[iP_i, (A_{ii} + B_{ii})]_*, C_{ij}]_*)$$

$$= \Phi([[iP_i, A_{ii}]_*, C_{ij}]_*) + \Phi([[iP_i, B_{ii}]_*, C_{ij}]_*$$

$$= [[\Phi(iP_i, (A_{ii} + B_{ii})]_*, C_{ij}]_* + [[iP_i, (A_{ii} + B_{ii})]_*, \Phi(C_{ij})]_*$$

$$+ [[iP_i, (\Phi(A_{ii}) + \Phi(B_{ii})]_*, C_{ij}]_*.$$

From primeness of \mathcal{A} we have $T_{ii} = 0$.

Hence, the additivity of Φ comes from the above claims.

References

- [1] Z. Bai and S. Du, The structure of non-linear Lie derivations on factor von Neumann algebras, Linear Algebra Appl. 436 (2012), 2701–2708.
- [2] J. Cui and C.K. Li, Maps preserving product $XY YX^*$ on factor von Neumann algebras, Linear Algebra Appl. **431** (2009), 833–842.
- [3] C. Li, F. Lu and X. Fang, Nonlinear ξ -Jordan *-derivations on von Neumann algebras, Linear and Multilinear Algebra. **62** (2014), 466–473.
- [4] C. Li, F. Lu and X. Fang, Nonlinear mappings preserving product $XY + YX^*$ on factor von Neumann algebras, Linear Algebra Appl. 438 (2013), 2339–2345.
- [5] C. LI, F Zhao and Q. Chen, Nonlinear Skew Lie Triple Derivations between Factors, Acta Mathematica Sinica 32 (2016), 821–830.
- [6] L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), 229–234.
- [7] A. Taghavi, V. Darvish and H. Rohi, Additivity of maps preserving products $AP \pm PA^*$ on C^* -algebras, Mathematica Slovaca **67** (2017), 213–220.
- [8] A. Taghavi, H. Rohi and V. Darvish, Non-linear *-Jordan derivations on von Neumann algebras, Linear Multilinear Algebra 64 (2016), 426–439.

[9] W. Yu and J. Zhang, Nonlinear *-Lie derivations on factor von Neumann algebras, Linear Algebra Appl. 437 (2012), 1979–1991.

Ali Taghavi

Department of Mathematics, Faculty of Mathematical Sciences University of Mazandaran P. O. Box 47416-1468 Babolsar, Iran. E-mail: taghavi@umz.ac.ir

Mojtaba Nouri

Department of Mathematics, Faculty of Mathematical Sciences University of Mazandaran P. O. Box 47416-1468 Babolsar, Iran. *E-mail*: mojtaba.nori2010@gmail.com

Vahid Darvish

Department of Mathematics, Faculty of Mathematical Sciences University of Mazandaran P. O. Box 47416-1468 Babolsar, Iran. *E-mail*: vahid.darvish@mail.com