• Title/Summary/Keyword: Lid-Driven

Search Result 57, Processing Time 0.026 seconds

A Study on Unsteady Flow Characteristics of Closed Cavity with Obstacle (장애물을 갖는 밀폐공간의 비정상 유동특성에 관한연구)

  • 조대환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.176-183
    • /
    • 1999
  • This paper is aimed to investigate behaviour of vortex in 2-D step cavity with high Reynolds numbers$(3.2{\times}10^{3},\;10^{4},\;3{\times}10^{4},\;5{\times}10^{4}\;and\;7{\times}10^{4})$. The SOLA algorithm which is MAC type was adopted to solution method computing the flow field on irregular grid. In case of $Re=7{\times}10^{4}$ flow behavior is steady bu periodic unsteady sinusoidal fluctuation of local velocity and kinetic energy is found for $Re=10^{4}$ Continuous movements of small eddies in the secondary flow regions are discov-ered for $3{\times}10^{4}$ Generation of eddies and their active migrating behavior are detected over $Re=5{\times}10^{4}$ resulting in complete unsteady and non-linear flow characteristics Furthermore a typhoon-like vortex(TLV) appears intermittently and rotates along the separation regions and boundary layers.

  • PDF

Application of the Krylov Subspace Method to the Incompressible Navier-Stokes Equations (비압축성 Navier-Stokes 방정식에 대한 Krylov 부공간법의 적용)

  • Maeng, Joo-Sung;Choi, IL-Kon;Lim, Youn-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.907-915
    • /
    • 2000
  • The preconditioned Krylov subspace methods were applied to the incompressible Navier-Stoke's equations for convergence acceleration. Three of the Krylov subspace methods combined with the five of the preconditioners were tested to solve the lid-driven cavity flow problem. The MILU preconditioned CG method showed very fast and stable convergency. The combination of GMRES/MILU-CG solver for momentum and pressure correction equations was found less dependency on the number of the grid points among them. A guide line for stopping inner iterations for each equation is offered.

Numerical Investigation of Mixing Characteristics in a Cavity Flow by Using Hybrid Lattice Boltzmann Method (혼성 격자볼츠만 방법을 이용한 공동 형상 내부에서의 혼합 특성에 관한 수치적 연구)

  • Shin, Myung Seob;Jeon, Seok Yun;Yoon, Joon Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.683-693
    • /
    • 2013
  • In this study, the mixing characteristics in lid-driven cavity flows were studied numerically by using a hybrid lattice Boltzmann method (HLBM). First, we compared the numerical results from single-relaxation-time (LB-SRT) and multi-relaxation-time (LB-MRT) models to examine their reliability. In most of the cavity flow, the results from both the LB-SRT and the LB-MRT models were in good agreement with those using a Navier-Stokes solver for Re=100-5000. However, the LB-MRT model was superior to the LB-SRT model for the simulation of higher Reynolds number flows having a geometrical singularity with much lesser spatial oscillations. For this reason, the LB-MRT model was selected to study the mass transport in lid-driven cavity flows, and it was demonstrated that mass transport in the fluid was activated by a recirculation zone in the cavity, which is connected from the top to the bottom surfaces through two boundary layers. Various mixing characteristics such as the concentration profiles, mean Sherwood (Sh) numbers, and velocity were computed. Finally, the detailed transport mechanism and solutions for the concentration profile in the cavity were presented.

A Vorticity-Based Method for Incompressible Viscous Flow Analysis (와도를 기저로 한 비압축성 점성유동해석 방법)

  • Suh J. C.
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.11-21
    • /
    • 1998
  • A vorticity-based method for the numerical solution of the two-dimensional incompressible Navier-Stokes equations is presented. The governing equations for vorticity, velocity and pressure variables are expressed in an integro-differential form. The global coupling between the vorticity and the pressure boundary conditions is fully considered in an iterative procedure when numerical schemes are employed. The finite volume method of the second order TVD scheme is implemented to integrate the vorticity transport equation with the dynamic vorticity boundary condition. The velocity field is obtained by using the Biot-Savart integral. The Green's scalar identity is used to solve the total pressure in an integral approach similar to the surface panel methods which have been well established for potential flow analysis. The present formulation is validated by comparison with data from the literature for the two-dimensional cavity flow driven by shear in a square cavity. We take two types of the cavity now: (ⅰ) driven by non-uniform shear on top lid and body forces for which the exact solution exists, and (ⅱ) driven only by uniform shear (of the classical type).

  • PDF

An Incompressible Flow Computation using a Hierarchical Iterative Method (계층적 반복법을 이용한 비압축성 유동계산)

  • Kim Jin Whan;Jeong Chang Ryul
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.216-221
    • /
    • 2004
  • In two dimensional incompressible flaws, a preconditioning technique called Hierarchical Iterative Procedure(HIP) has been implemented on a SUPG finite element formulation. By using the SUPG formulation, one can escape from the LBB constraint and hence achieve an equal order formulation. In this paper, we increased the order of interpolation up to cubic. The conjugate gradient squared(CGS) method is used for the outer iteration, and the HIP for the preconditioning for the incompressible Navier-Stokes equation. The hierarchical elements has been used to achieve a higher order accuracy in fluid flaw analyses, but a proper efficient iterative procedure for higher order finite element formulation has not been available so far. The numerical results by the present HIP for the lid driven cavity flaw showed the present procedure to be stable, very efficient and useful in flaw analyses in conjunction with hierarchical elements.

  • PDF

A Research on the PIV Algorithm Using Image Coding (영상코드화 기법을 이용한 PIV 알고리듬에 대한 연구)

  • Kim, Sung-Kyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.153-160
    • /
    • 2000
  • A Particle Image Velocimetry(PIV) algorithm is developed to analyze whole flow field both qualitatively and quantitatively. The practical use of PIV requires the use of fast, reliable, computer-based methods for tracking numerous particles suspended in a flow field. The TSS, NTSS, FFT-Hybrid, which are developed in the area of image compression and coding, are introduced to develop fast vector search algorithm. The numerical solution of the lid-driven cavity flow by the ADI algorithm with the Wachspress Formula is introduced to produce synthetic data for the validation of the tracking algorithms. The algorithms are applied to image data of real flow experiments. The comparisons in CPU time and mean error show, with a small loss of accuracy, CPU time for tracking is reduced considerably.

A NUMERICAL ANALYSIS USING CIP METHOD (CIP 방법을 사용한 해석법)

  • Lee, J.H.;Hur, N.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.211-217
    • /
    • 2009
  • The numerical program has been developed for the purpose of the complicate geometries application using CIP method. The non-staggered, non-orthogonal, and unstructured grid system can be also used for the various geometries in the program. For validating CIP solver, the lid-driven cavity flow and solitary wave propagation flow are carried out. Test results show a good agreement with the verified results. The dynamic solver was used for the behavior of moving body. Interface process between the two solvers is introduced. The research was performed on the flow problem around torpedo and log and the flow problem in a tank in order to analyze the three phase flow problem Although the comparison to the verified results was not quantitatively performed, the trend of the results was reasonable.

  • PDF

Numerical Analysis for Improving Passing Flow Rate Quantity abound a Radiator (라디에이터 통과풍량 확보를 위한 수치적 검토)

  • 김은필;강상훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.304-310
    • /
    • 2001
  • This paper describes the analysis of flow field using a projection finite element method. The projection scheme with a pressure correction is presented for the analysis of an incompressible Navier-Stokes flow. The projection scheme is analyzed numerically and applied to the well-known bench marking problems such as lid driven cavity. Finally, the projection scheme is applied to a flow through the automobiles front. In the automobiles cooling system, the flow through its front is very important to a cooling performance. The results show that the flow quantity increases by locating the position of bumper to the further front position of a car. And, the improvement on the suction part below a bumper achieves the more passing flow quantity. The attachment of an air dam increases passing flow quantity causing the pressure rise to the front part and the pressure drop beneath a car.

  • PDF

An Incompressible Flow Computation by a Hierarchical Iterative Preconditioning (계층적 반복의 예조건화에 의한 비압축성 유동 계산)

  • KIM JIN WHAN;JEONG CHANG-RYUL
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.5 s.54
    • /
    • pp.11-18
    • /
    • 2003
  • In two-dimensional incompressible flows, a preconditioning technique called Hierarchical Iterative Procedure (HIP) has been implemented on a SUPG finite element formulation. By using the SUPG formulation, one can escape from the LBB constraint hence, achieving an equal order formulation. In this paper, we increased the order of interpolation up to cubic. The conjugate gradient squared (CGS) method is used for the outer iteration, and the HIP for the preconditioning for the incompressible Navier-Stokes equation. The hierarchical elements have been used to achieve a higher order accuracy in fluid flow analyses, but a proper and efficient iterative procedure for higher order finite element formulation has not been available, thus far. The numerical results by the present HIP for the lid driven cavity flow showed the present procedure to be stable, very efficient, and useful in flow analyses, in conjunction with hierarchical elements.

A new incompatible mixed formulation for incompressible and nearly-incompressible media (비압축성 문제에 대한 비적합 복합유한요소 정식화)

  • Ju, Sang-Baek;Sin, Hyo-Chol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.365-371
    • /
    • 1998
  • In the present study, we attempted to add the incompatible functions as additional variable terms to the conventional u-p formulation. It is derived from the four-field generalized variational principle that encompasses velocity, pressure, velocity strains and stress fields as independent interpolated variables. As a severe test of the present formulation, we have investigated the driven cavity with the corner velocity singularity like leaky lid. Through the test, the present element performs very well without unstable oscillation of pressure distribution.