• Title/Summary/Keyword: Li-doped ZnO

Search Result 39, Processing Time 0.03 seconds

On the photorefractive resistance characteristics of lithium niobate single crystals with doping (Lithium niobate 단결정의 첨가 이온$(Zn^{2+},;Mg^{2+})$에 따른 광손상 특성에 관한 연구)

  • 김기현;심광보;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.1
    • /
    • pp.10-17
    • /
    • 1998
  • The characteristics of the lithium niobate single ($LiNbO_3$) crystals grown doped with $Mg^{2+}$ or $Zn^{2+}$ ions, which are well-known as the ions improving the photorefractive resistance of $LiNbO_3$, have been analysed in comparision with those of undoped $LiNbO_3$ crystal. In particular, $Zn^{2+}$ doping was estimated to increase the photorefractive resistance indirectly from the optical and electrical properties. Therefore, the $LiNbO_3$ crystals doped with ZnO could be used for high intensive laser device application.

  • PDF

Crystal growth and optical properties of Zn and Yb co-doped $LiNbO_3$ rod-shape single crystal by micro-pulling down method (Micro-pulling down법으로 성장시킨 Zn와 Yb를 첨가한 $LiNbO_3$ 단결정의 광학적 특성)

  • Her, J.Y.;Lee, H.J.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.1
    • /
    • pp.11-14
    • /
    • 2009
  • Yb and Zn co-doped $LiNbO_3$ single crystal rods which had a diameter of 2 mm and a length of $15{\sim}25 mm$ were grown by micro-pulling down (${\mu}-PD$) method. The single crystals were successfully grown and had a uniform diameter and a smooth surface without crack. We realized of $LiNbO_3$ single crystals were hexagonal structure to compare with peaks of $LiNbO_3$ powder by Raman spectra. The threshold level of Zn concentration which is effective for optical damage were observed as about 1 mol% with IR transmission spectra.

The Luminescent Properities of Li and Tm Doped $ZnGa_2$$O_4$Phosphors (Li, Tm이 도핑된 $ZnGa_2$$O_4$형광체의 발광특성)

  • 김용태;류호진;박희동;최대규;이명진;정경원;전애경;윤기현
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.2
    • /
    • pp.112-116
    • /
    • 2001
  • 고상반응법에 의한 제조한 ZnGa$_2$O$_4$형광체에 Li 및 Tm 원소를 도핑함에 따른 발광특성을 조사하였다. 254nm 여기 하에서, 환원 처리된 ZnGa$_2$O$_4$형광체는 245nm에서 흡수피크와 380nm에서 발광피크를 나타내며, 이는 스피넬 구조에서 Ga$^{3+}$ 이온의 $^4$T$_2$$\longrightarrow$$^4$A$_2$천이에 기인한다. ZnGa$_2$O$_4$형광체에 있어서 Li 및 Tm을 도핑했을 경우가 도핑하지 않은 시료에 비해 발광강도 및 색순도가 개선되었으며, Li 및 Tm을 각각 0.1 mol, 0.01 mol 첨가했을 때 가장 우수한 발광강도 및 색순도 특성을 보였다.

  • PDF

Li-doped ZnO 박막의 제작과 특성에 관한 연구

  • Sim, Eun-Hui;Lee, Cho-Eun;Jeong, Ui-Wan;Lee, Jin-Yong;Gang, Myeong-Gi;No, Ga-Hyeon;Hong, Seung-Su;Heo, Seong-Eun;Kim, Du-Su;Lee, Yeong-Min;Kim, Deuk-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.407-407
    • /
    • 2012
  • 본 연구에서는 p형 전도 특성을 갖는 ZnO 박막 연구를 위해 RF 마그네트론 스퍼터 법으로 Li이 1 at.% 첨가된 ZnO target을 이용하여 ZnLiO 박막을 제작하였다. ZnLiO 박막은 $500{\sim}650^{\circ}C$의 온도 구간에서 $50^{\circ}C$ 단계로 아르곤 가스와 산소의 가스 분압비를 조절하여 성장하였으며, 급속 열처리 법으로 산소분위기에서 3분간 열처리 하였다. 성장된 박막은 전자주사현미경과 x-ray 회절 분광법을 이용하여 구조적 특성을 분석하였고, Hall 효과 측정을 통하여 전기적 특성을 분석하였다. Photoluminescence (PL)법을 통하여 박막의 광학적 특성을 분석하였다. 초기 제작된 ZnLiO 박막은 산소 분위기에서의 급속 열처리과정을 통하여 결정성과 p형 전도 특성이 향상됨을 확인하였다. 이는 열처리 과정을 통해 격자 내 치환되지 못한 Li 원자가 Zn 자리로 치환됨에 따라 격자가 안정화 되며, 억셉터 농도의 증가를 통하여 p-type 전도 특성이 개선된 것으로 보여진다.

  • PDF

Effects of strain on the optical and magnetic properties of Ce-doped ZnO

  • Xu, Zhenchao;Hou, Qingyu;Guo, Feng;Jia, Xiaofang;Li, Cong;Li, Wenling
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1465-1472
    • /
    • 2018
  • The magnetic and optical properties of Ce-doped ZnO systems have been widely demonstrated, but the effects of different strains of Ce-doped ZnO systems remain unclear. To solve these problems, this study identified the effects of biaxial strain on the electronic structure, absorption spectrum, and magnetic properties of Ce-doped ZnO systems by using a generalized gradient approximation + U (GGA + U) method with plane wave pseudopotential. Under unstrained conditions, the formation energy decreased, the system became stable, and the doping process became easy with the increase in the distances between two Ce atoms. The band gap of the systems with different strains became narrower than that of undoped ZnO without strain, and the absorption spectra showed a red shift. The band gap narrowed, and the red shift became weak with the increase of compressive strain. By contrast, the band gap widened, and the red shift became significant with the increase of tensile strain. The red shift was significant when the tensile strain was 3%. The systems with -1%, 0%, and 1% strains were ferromagnetic. For the first time, the magnetic moment of the system with -1% strain was found to be the largest, and the system showed the greatest beneficial value for diluted magnetic semiconductors. The systems with -3%, -2%, 2%, and 3% strains were non-magnetic, and they had no value for diluted magnetic semiconductors. The ferromagnetism of the system with -1% strain was mainly caused by the hybrid coupling of Ce-4f, Ce-5d, and O-2p orbits. This finding was consistent with Zener's Ruderman-Kittel-Kasuya-Yosida theory. The results can serve as a reference for the design and preparation of new diluted magnetic semiconductors and optical functional materials.

Ferroelectricity of Bi-doped ZnO Films Probed by Scanning Probe Microscopy

  • Ben, Chu Van;Lee, Ju-Won;Kim, Jung-Hoon;Yang, Woo-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.323-323
    • /
    • 2012
  • We present ferroelectricity of Bi-doped ZnO film probed by piezoresponse force microscopy (PFM), which is one of the Scanning Probe Microscopy techniques. Perovskite ferroelectrics are limited to integration of devices into semiconductor microcircuitry due to hard adjusting their lattice structure to the semiconductor materials. Transition metal doped ZnO film is one of the candidate materials for replacing the perovskite ferroelectrics. In this study, ferroelectric characteristics of the Bi-doped ZnO grown by pulsed laser deposition were probed by PFM. The polarization switching and patterning of the ZnO films were performed by applying DC bias voltage between the AFM tips and the films with varying voltages and polarity. The PFM contrast before and after patterning showed clearly polarization switching for a specific concentration of Bi atoms. In addition, the patterned regions with nanoscale show clearly the local piezoresponse hysteresis loop. The spontaneous polarization of the ZnO film is estimated from the local piezoresponse based on the comparison with LiNbO3 single crystals.

  • PDF

Influence of Fast Neutron Irradiation on the Electrical and Optical Properties of Li Doped ZnSnO Thin Film Transistor (Li 도핑된 ZnSnO 박막 트랜지스터의 전기 및 광학적 특성에 대한 고속 중성자 조사의 영향)

  • Cho, In-Hwan;Kim, Chan-Joong;Jun, Byung-Hyuk
    • Korean Journal of Materials Research
    • /
    • v.30 no.3
    • /
    • pp.117-122
    • /
    • 2020
  • The effects of fast neutron irradiation on the electrical and optical properties of Li (3 at%) doped ZnSnO (ZTO) thin films fabricated using a sol-gel process are investigated. From the results of Li-ZTO TFT characteristics according to change of neutron irradiation time, the saturation mobility is found to increase and threshold voltage values shift to a negative direction from 1,000 s neutron irradiation time. X-ray photoelectron spectroscopy analysis of the O 1s core level shows that the relative area of oxygen vacancies is almost unchanged with different irradiation times. From the results of band alignment, it is confirmed that, due to the increase of electron carrier concentration, the Fermi level (EF) of the sample irradiated for 1,000 s is located at the position closest to the conduction band minimum. The increase in electron concentration is considered by looking at the shallow band edge state under the conduction band edge formed by fast neutron irradiation of more than 1,000 s.

Frequency characteristics of Li doped ZnO thin film resonator annealed by various temperatures (Li:ZnO를 이용하여 제조한 FBAR의 열처리 온도에 따른 주파수 특성)

  • Kim, Bong-Seok;Kim, Eung-Kwon;Hwang, Hyun-Suk;Kang, Hyun-Il;Lee, Kyu-Il;Lee, Tae-Yong;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.309-310
    • /
    • 2006
  • In this paper, frequency characteristic of FBAR was studied as a function of annealing temperature. we have used Li dopant to enhance electrical properties of ZnO thin film. Li:ZnO thin film was deposited on Al(300 nm)/$SiO_2$(500 nm)/Si($500\;{\mu}m$) and each layer was patterned. Thermal treatment was executed in range of between 300 and $600^{\circ}C$ in $O_2$ ambient. We observed that the resistivity of ZnO is enhanced under the influence of Li doping and return loss in FBAR frequency properties is improved through annealing.

  • PDF

Phase Evolution, Microstructure and Microwave Dielectric Properties of Zn1.9-2xLixAlxSi1.05O4 Ceramics

  • Kim, Yun-Han;Kim, Shin;Jeong, Seong-Min;Kim, So-Jung;Yoon, Sang-Ok
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.3
    • /
    • pp.215-220
    • /
    • 2015
  • Phase evolution, microstructure, and microwave dielectric properties of $Li_2O$ and $Al_2O_3$ doped $Zn_{1.9}Si_{1.05}O_4$, i.e., $Zn_{1.9-2x}Li_xAl_x-Si_{1.05}O_4$, ceramics (x = 0.02 ~ 0.10) were investigated. The ceramics were densified by $SiO_2$-rich liquid phase composed of the Li-Al-Si-O system, indicating that doped Li and Al contributed to the formation of the liquid. As the secondary phase, ${\beta}$-spodumene solid solution with the composition of $LiAlSi_3O_8$ was precipitated from the liquid during the cooling process. The dense ceramics were obtained for the specimens of $$x{\geq_-}0.06$$ showing the rapid densification above $1000^{\circ}C$, implying that a certain amount of liquid is necessary to densify. The specimen of x = 0.06 sintered at $1050^{\circ}C$ exhibited good microwave dielectric properties; the dielectric constant and the quality factor ($Q{\times}f_0$) were 6.4 and 11,213 GHz, respectively.

A study on the periodical domain obtained in Nd : $LiNbO_3$ sinlgle crystals grown by czochralski method (Czochralski법에 의해 성장시킨 Nd : $LiNbO_3$ 단결정의 주기적인 domain제어에 관한 연구)

  • 최종건
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.1
    • /
    • pp.50-55
    • /
    • 2002
  • $Nd_2O_3$0.2~0.5 wt.% doped $LiNbO_3$single crystals were grown by the Czochralski method. The ZnO doping by 2~8 mole% can improve the resistance of optical damage. In this study, Nd : LiNbO$_3$ single crystals with the periodical domain structure were obtained by CZ method.