Browse > Article
http://dx.doi.org/10.4191/kcers.2015.52.3.215

Phase Evolution, Microstructure and Microwave Dielectric Properties of Zn1.9-2xLixAlxSi1.05O4 Ceramics  

Kim, Yun-Han (Department of Materials Engineering, Graduate School, Gangneung-Wonju National University)
Kim, Shin (Hasla Co., Ltd.)
Jeong, Seong-Min (Energy & Environmental Division, Korea Institute of Ceramic Engineering and Technology(KICET))
Kim, So-Jung (Department of Electrical and Electronic Engineering, Hanzhong University)
Yoon, Sang-Ok (Department of Materials Engineering, Graduate School, Gangneung-Wonju National University)
Publication Information
Abstract
Phase evolution, microstructure, and microwave dielectric properties of $Li_2O$ and $Al_2O_3$ doped $Zn_{1.9}Si_{1.05}O_4$, i.e., $Zn_{1.9-2x}Li_xAl_x-Si_{1.05}O_4$, ceramics (x = 0.02 ~ 0.10) were investigated. The ceramics were densified by $SiO_2$-rich liquid phase composed of the Li-Al-Si-O system, indicating that doped Li and Al contributed to the formation of the liquid. As the secondary phase, ${\beta}$-spodumene solid solution with the composition of $LiAlSi_3O_8$ was precipitated from the liquid during the cooling process. The dense ceramics were obtained for the specimens of $$x{\geq_-}0.06$$ showing the rapid densification above $1000^{\circ}C$, implying that a certain amount of liquid is necessary to densify. The specimen of x = 0.06 sintered at $1050^{\circ}C$ exhibited good microwave dielectric properties; the dielectric constant and the quality factor ($Q{\times}f_0$) were 6.4 and 11,213 GHz, respectively.
Keywords
$Zn_2SiO_4$; Liquid-phase sintering; $LiAlSi_3O_8$; Dielectric constant; Quality factor;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 I. M. Reaney and D. Iddles, "Microwave Dielectric Ceramics for Resonators and Filters in Mobile Phone Networks," J. Am. Ceram. Soc., 89 [7] 2063-72 (2006).
2 H. Ohsato, "Research and Development of Microwave Dielectric Ceramics for Wireless Communications," J. Ceram. Soc. Jpn., 113 [11] 703-11 (2005).   DOI
3 S. B. Narang and S. Bahel, "Low Loss Dielectric Ceramics for Microwave Applications: A Review," J. Ceram. Process. Res., 11 [3] 316-21 (2010).
4 Y. Guo, H. Ohsato, and K.-I. Kakimoto, "Characterization and Dielectric Behavior of Willemite and $TiO_2$-Doped Willemite Ceramics at Millimeter-Wave Frequency," J. Eur. Ceram. Soc., 26 [10-11] 1827-30 (2006).   DOI
5 M. Dong, Z. Yue, H. Zhuang, S. Meng, and L. Li, "Microstructure and Microwave Dielectric Properties of $TiO_2$-Doped $Zn_2SiO_4$ Ceramics Through the Sol-Gel Process," J. Am. Ceram. Soc., 91 [12] 3981-85 (2008).   DOI
6 M. Valant, D. Suvorov, R. C. Pullar, K. Sarma, and N. M. Alford, "A Mechanism for Low-Temperature Sintering," J. Eur. Ceram. Soc., 26 [13] 2777-83 (2006).   DOI
7 J. L. Zou, Q. L. Zhang, H. Yang, and H. P. Sun, "A New System for Low Temperature Sintering ZnO-$SiO_2$ Dielectric Ceramics," Jpn. J. Appl. Phys., 45 [5A] 4143-45 (2006).   DOI
8 J. S. Kim, N. H. Nguyen, J. B. Lim, D. S. Paik, S. Nahm, J. H. Paik, J. H. Kim, and H.-J. Lee, "Low-Temperature Sintering and Microwave Dielectric Properties of the $Zn_2SiO_4$ Ceramics," J. Am. Ceram. Soc., 91 [2] 671-74 (2008).   DOI
9 J. S. Kim, M. E. Song, M. R. Joung, J. H. Choi, S. Nahm, J. H. Paik, B. H. Choi, and H. J. Lee, "Low-Temperature Sintering and Microwave Dielectric Properties of $V_2O_5$-Added $Zn_2SiO_4$ Ceramics," J. Am. Ceram. Soc., 91 [12] 4133-36 (2008).   DOI
10 J. S. Kim, N. H. Nguyen, M. E. Song, J. B. Lim, D. S. Paik, S. Nahm, J. H. Paik, B. H. Choi, and S. J. Yu, "Effect of $Bi_2O_3$ Addition on the Sintering Temperature and Microwave Dielectric Properties of $Zn_2SiO_4$ Ceramics," Int. J. Appl. Ceram. Technol., 6 [5] 581-86 (2009).   DOI
11 J. S. Kim, M. E. Song, M. R. Joung, J. H. Choi, S. Nahm, S. I. Gu, J. H. Paik, and B. H. Choi, "Effect of $B_2O_3$ Addition on the Sintering Temperature and Microwave Dielectric Properties of $Zn_2SiO_4$ Ceramics," J. Eur. Ceram. Soc., 30 [2] 375-79 (2010).   DOI
12 S. Chen, S. Zhang, X. Zhou, X. Lv, and Y. Li, "Low Temperature Preparation of the $Zn_2SiO_4$ Ceramics with the Addition of BaO and $B_2O_3$," J. Mater. Sci.-Mater. El., 22 [9] 1274-81 (2011).   DOI
13 K. Tang, Q. Wu, and X. Xiang, "Low Temperature Sintering and Microwave Dielectric Properties of Zinc Silicate Ceramics," J. Mater. Sci.-Mater. El., 23 [5] 1099-102 (2012).   DOI
14 S. Li, Q. Zhang, and H. Yang, "Effect of $B_2O_3$ on the Aqueous Tape Casting and Microwave Properties of $Li_2O-Nb_2O_5-TiO_2$ Ceramics," Prog. Nat. Sci., 23 [2] 152-56 (2013).   DOI
15 N. H. Nguyen, J. B. Lim, S. Nahm, J. H. Paik, and J. H. Kim, "Effect of Zn/Si Ratio on the Microstructural and Microwave Dielectric Properties of $Zn_2SiO_4$ Ceramics," J. Am. Ceram. Soc., 90 [10] 3127-30 (2007).   DOI
16 D. U. Tulyaganov, S. Agathopoulos, H. R. Fernandes, and J. M. F. Ferreira, "Synthesis of Lithium Aluminosilicate Glass and Glass-Ceramics from Spodumene Material," Ceram. Int., 30 [6] 1023-30 (2004).   DOI
17 Y. H. Kim, Microwave Dielectric Properties of $Zn_2SiO_4$ Ceramic Solid Solutions (in Korean), pp. 47-60, in Master Thesis, Gangneung-Wonju National University, Gangneung, 2010.
18 F. Doreau, H. Maupas, D. Kervadec, P. Ruterana, J. Vicens, and J. L. Chermant, "The Complexity of the Matrix Micro Structure in SiC-Fiber-Reinforced Glass Ceramic Composites," J. Eur. Ceram. Soc., 15 [12] 1235-47 (1995).   DOI
19 S. Mandal, S. Chakrabarti, S. K. Das, and S. Ghatak, "Synthesis of Low Expansion Ceramics in Lithia-Alumina-Silica System with Zirconia Additive Using the Powder Precursor in the Form of Hydroxyhydrogel," Ceram. Int., 33 [2] 123-32 (2007).   DOI
20 T. Yang and S. Liu, "$Li_2O-Al_2O_3-SiO_2$ Glass-Ceramic Coating on a Porous Silica Ceramic Substrate," J. Alloy Compd., 600 51-54 (2014).   DOI
21 R. Roy and E. F. Osborn, "The System Lithium Metasilicate-Spodumene-Silica," J. Am. Chem. Soc., 71 [6] 2086-95 (1949).   DOI
22 S. R. Lukic, D. M. Petrovic, M. D. Dramicanin, M. Mitric, and Lj. Dacanin, "Optical and Structural Properties of $Zn_{2-}SiO_4:Mn^{2+}$ Green Phosphor Nanoparticles Obtained by a Polymer-Assisted Sol-Gel Method," Scripta Mater., 58 [8] 655-58 (2008).   DOI
23 M. Takesue, H. Hayashi, and R. L. Smith Jr., "Thermal and Chemical Methods for Producing Zinc Silicate (Willemite): A Review," Prog. Cryst. Growth Ch., 55 [3-4] 98-124 (2009).   DOI
24 S. J. Penn, N. M. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, and K. Schrapel, "Effect of Porosity and Grain Size on the Microwave Dielectric Properties of Sintered Alumina," J. Am. Ceram. Soc., 80 [7] 1885-88 (1997).   DOI
25 R. D. Shanon, "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides," Acta Crystallogr A., 32 751-67 (1976).   DOI
26 R. M. German, Liquid Phase Sintering, pp. 101-26, Plenum Press, New York, 1985.
27 R. M. German, P. Suri, and S. J. Park, "Review: Liquid Phase Sintering," J. Mater. Sci., 44 [1] 1-39 (2009).   DOI
28 T. Ogiwara, Y. Noda, K. Shoji, and O. Kimura "Low Temperature Sintering of ${\beta}$-spodumene Ceramics with Low Thermal Expansion Using $Li_2O$-$Bi_2O_3$ as a Sintering additive," J. Ceram. Soc. Jpn., 119 [7] 557-62 (2011).   DOI
29 V. L. Gurevich and A. K. Tagantsev, "Intrinsic Dielectric Loss in Crystals," Adv. Phys., 40 [6] 719-67 (1991).   DOI
30 N. M. Alford and S. J. Penn, "Sintered Alumina with Low Dielectric Loss," J. Appl. Phys., 80 [10] 5895-98 (1996).   DOI