Browse > Article
http://dx.doi.org/10.1016/j.cap.2018.08.014

Effects of strain on the optical and magnetic properties of Ce-doped ZnO  

Xu, Zhenchao (College of Materials Science and Engineering, Inner Mongolia University of Technology)
Hou, Qingyu (College of Science, Inner Mongolia University of Technology)
Guo, Feng (College of Materials Science and Engineering, Inner Mongolia University of Technology)
Jia, Xiaofang (College of Science, Inner Mongolia University of Technology)
Li, Cong (College of Science, Inner Mongolia University of Technology)
Li, Wenling (College of Science, Inner Mongolia University of Technology)
Abstract
The magnetic and optical properties of Ce-doped ZnO systems have been widely demonstrated, but the effects of different strains of Ce-doped ZnO systems remain unclear. To solve these problems, this study identified the effects of biaxial strain on the electronic structure, absorption spectrum, and magnetic properties of Ce-doped ZnO systems by using a generalized gradient approximation + U (GGA + U) method with plane wave pseudopotential. Under unstrained conditions, the formation energy decreased, the system became stable, and the doping process became easy with the increase in the distances between two Ce atoms. The band gap of the systems with different strains became narrower than that of undoped ZnO without strain, and the absorption spectra showed a red shift. The band gap narrowed, and the red shift became weak with the increase of compressive strain. By contrast, the band gap widened, and the red shift became significant with the increase of tensile strain. The red shift was significant when the tensile strain was 3%. The systems with -1%, 0%, and 1% strains were ferromagnetic. For the first time, the magnetic moment of the system with -1% strain was found to be the largest, and the system showed the greatest beneficial value for diluted magnetic semiconductors. The systems with -3%, -2%, 2%, and 3% strains were non-magnetic, and they had no value for diluted magnetic semiconductors. The ferromagnetism of the system with -1% strain was mainly caused by the hybrid coupling of Ce-4f, Ce-5d, and O-2p orbits. This finding was consistent with Zener's Ruderman-Kittel-Kasuya-Yosida theory. The results can serve as a reference for the design and preparation of new diluted magnetic semiconductors and optical functional materials.
Keywords
Ce-doped ZnO; Strain; Optical property; Magnetic property; First-principles;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Li, F. Lu, R. Fan, C. Ma, B. Xu, Effect of Er local surrounding on photoluminescence of Si Er co-doped ZnO film, J. Lumin. 200 (2018) 9-13.   DOI
2 N. Elkhoshkhany, O. Essam, A.M. Embaby, Optical, thermal and antibacterial properties of tellurite glass system doped with ZnO, Mater. Chem. Phys. 214 (2018) 489-498.   DOI
3 R.C. Rai, Analysis of the Urbach tails in absorption spectra of undoped ZnO thin films, J. Appl. Phys. 113 (2013) 383-386.
4 O. Lupan, T. Pauporte, B. Viana, P. Aschehoug, M. Ahmadi, B.R. Cuenya, Y. Rudzevich, Y. Lin, L. Chow, Eu-doped ZnO nanowire arrays grown by electrodeposition, Appl. Surf. Sci. 282 (2013) 782-788.   DOI
5 K. Senthilkumar, T. Yoshida, Y. Fujita, Formation of $D-V_{Zn}$ complex defects and possible p-type conductivity of ZnO nanoparticle via hydrogen adsorption, J. Mater. Sci. 53 (2018) 11977-11985.   DOI
6 S.T. Tan, X.W. Sun, Z.G. Yu, P. Wu, G.Q. Lo, D.L. Kwong, p-type conduction in unintentional carbon-doped ZnO thin films, Appl. Phys. Lett. 91 (2007) 072101.   DOI
7 P. Murkute, S. Vatsa, H. Ghadi, S. Saha, S. Chakrabarti, Role of Pzn-2Vzn centre on the luminescence properties of phosphorus doped ZnO thin films by varying doping concentration, J. Lumin. 200 (2018) 120-125.   DOI
8 X.C. Wang, W.B. Mi, S. Dong, X.M. Chen, B.H. Yang, Microstructure and optical properties of N-incorporated polycrystalline ZnO films, J. Alloys Compd. 478 (2009) 507-512.   DOI
9 L. Yang, J. Yang, Q. Guan, L. Yang, Y. Zhang, Y. Wang, B. Feng, J. Cao, X. Liu, Y. Yang, M. Wei, Effects of Cr-doping on the optical and magnetic properties in ZnO nanoparticles prepared by sol-gel method, J. Alloys Compd. 486 (2009) 835-838.   DOI
10 K. Ueda, H. Tabata, T. Kawai, Magnetic and electric properties of transition-metal-doped ZnO films, Appl. Phys. Lett. 79 (2001) 988-990.   DOI
11 B.B. Straumal, S.G. Protasova, A.A. Mazilkin, T. Tietze, E. Goering, G. Schutz, P.B. Straumal, B. Baretzky, Ferromagnetic behaviour of Fe-doped ZnO nanograined films, Beilstein J. Nanotechnol. 4 (2013) 361-369.   DOI
12 X.C. Wanga, W.B. Mi, D.F. Kuang, Microstructure, magnetic and optical properties of sputtered polycrystalline ZnO films with Fe addition, Appl. Surf. Sci. 256 (2010) 1930-1935.   DOI
13 J.H. Zheng, J.L. Song, X.J. Li, Q. Jiang, J.S. Lian, Experimental and first-principle investigation of Cu-doped ZnO ferromagnetic powders, Cryst. Res. Technol. 46 (2011) 1143-1148.   DOI
14 J.A. Sans, J.F. Sanchez-Royo, A. Segura, G. Tobias, E. Canadell, Chemical effects on the optical band-gap of heavily doped ZnO:$M_{III}$ (M=Al,Ga,In): an investigation by means of photoelectron spectroscopy, optical measurements under pressure, and band structure calculations, Phys. Rev. B Condens. Matter 79 (2009) 195105.   DOI
15 A.Y. Li, X.D. Li, Q.B. Lin, S.Q. Wu, Z.Z. Zhu, Half-metallic ferromagnetism in Ag-doped ZnO: an ab initio study, Solid State Sci. 14 (2012) 769-772.   DOI
16 W.B. Mi, H.L. Bai, Microstructure, magnetic, and optical properties of sputtered Mn-doped ZnO films with high-temperature ferromagnetism, J. Appl. Phys. 101 (2007) 023904.   DOI
17 M. Akyol, A. Ekicibil, K. Kiymac, AC-magnetic susceptibility of Dy doped ZnO compounds, J. Magn. Magn Mater. 385 (2015) 65-69.   DOI
18 Y.G. Zhang, G.B. Zhang, Y.X. Wang, First-principles study of the electronic structure and optical properties of Ce-doped ZnO, J. Appl. Phys. 109 (2011) 063510.   DOI
19 D. Wang, Q. Chen, G. Xing, G. Xing, J. Yi, S.R. Bakaul, J. Ding, J. Wang, T. Wu, Robust room-temperature ferromagnetism with giant anisotropy in Nd-Doped ZnO nanowire arrays, Nano Lett. 12 (2012) 3994-4000.   DOI
20 O. Yayapao, T. Thongtem, A. Phuruangrat, S. Thongtem, Sonochemical synthesis of Dy-doped ZnO nanostructures and their photocatalytic properties, J. Alloys Compd. 576 (2013) 72-79.   DOI
21 M.M. Mezdrogina, A.Y. Vinogradov, M.V. Eremenko, Intensity of visible and IR emission of intracenter 4 f, transitions of RE ions in Er- and Tm-doped ZnO films with additional Ag, Li, and N impurities, Optic Spectrosc. 121 (2016) 220-228.   DOI
22 J. Iqbal, X. Liu, H. Zhu, C. Pan, Y. Zhang, D. Yu, R. Yu, Trapping of Ce electrons in band gap and room temperature ferromagnetism of $Ce^{4+}$ doped ZnO nanowires, J. Appl. Phys. 106 (2009) 083515.   DOI
23 O. Bechambi, L. Jlaiel, W. Najjar, S. Sayadi, Photocatalytic degradation of bisphenol A in the presence of Ce-ZnO: evolution of kinetics, toxicity and photodegradation mechanism, Mater. Chem. Phys. 173 (2016) 95-105.   DOI
24 Y.H. Lee, D.H. Kim, T.W. Kim, Efficiency enhancement of inverted organic photovoltaic cells due to an embedded Ce-doped ZnO electron transport layer synthesized by using a sol-gel process, J. Sol. Gel Sci. Technol. 76 (2015) 644-650.   DOI
25 M.S. Miao, W.R.L. Lambrecht, Effects of biaxial strain on stability and half-metallicity of Cr and Mn pnictides and chalcogenides in the zinc-blende structure, Phys. Rev. B 72 (2005) 064409.   DOI
26 N. Sinha, G. Ray, S. Bhandari, S. Godara, B. Kumar, Synthesis and enhanced properties of cerium doped ZnO nanorods, Ceram. Int. 40 (2014) 12337-12342.   DOI
27 D.K. Sharma, K.K. Sharma, V. Kumxar, A. Sharma, Effect of Ce doping on the structural, optical and magnetic properties of ZnO nanoparticles, J. Mater. Sci. Mater. Electron. 27 (2016) 10330-10335.   DOI
28 X.J. Zhang, W.B. Mi, X.C. Wang, H.L. Bai, First-principles prediction of electronic structure and magnetic ordering of rare-earth metals doped ZnO, J. Alloys Compd. 617 (2014) 828-833.   DOI
29 A.G. El Hachimi, H. Zaari, A. Benyoussef, M. El Yadari, A. El Kenz, First-principles prediction of the magnetism of 4f rare-earth-metal-doped wurtzite zinc oxide, J. Rare Earths 32 (2014) 715-721.   DOI
30 C. Tan, D. Xu, K. Zhang, X. Tian, W. Cai, Electronic and magnetic properties of rareearth metals doped ZnO monolayer, J. Nanomater. 2015 (2015) 1-8.
31 Y.J. Zhao, A. Zunger, Zinc-blende half-metallic ferromagnets are rarely stabilized by coherent epitaxy, Phys. Rev. B 71 (2005) 132403.   DOI
32 D. Huang, Y.J. Zhao, L.J. Chen, D.H. Chen, Y.Z. Shao, Structural instability of epitaxial zinc-blende vanadium pnictides and chalcogenides for half-metallic ferromagnets, J. Appl. Phys. 104 (2008) 053709.   DOI
33 M. Li, J. Zhang, Y. Zhang, First-principles calculation of compensated (2N, W) co-doping impacts on band gap engineering in anatase $TiO_2$, Chem. Phys. Lett. 527 (2012) 63-66.   DOI
34 R. Mariappan, V. Ponnuswamy, P. Suresh, R. Suresh, M. Ragavendar, A.C. Bose, Nanostructured $Ce_xZn_{1-x}O$ thin films: influence of Ce doping on the structural, optical and electrical properties, J. Alloys Compd. 588 (2014) 170-176.   DOI
35 X. Ma, Y. Wu, Y. Lv, Y. Zhu, Correlation effects on lattice relaxation and electronic structure of ZnO within the GGA+U formalism, J. Phys. Chem. C 117 (2013) 26029-26039.   DOI
36 J.V. Foreman1, J.G. Simmons Jr., W.E. Baughman, J. Liu, H.O. Everitt1, Localized excitons mediate defect emission in ZnO powders, J. Appl. Phys. 113 (2013) 041301.
37 S.K. Shukla, E.S. Agorku, H. Mittal, A.K. Mishra, Synthesis, characterization and photoluminescence properties of $Ce^{3+}$-doped ZnO-nanophosphors, Chem. Pap. 68 (2014) 217-222.
38 O. Bechambi, A. Touati, S. Sayadi, W. Najjar, Effect of cerium doping on the textural, structural and optical properties of zinc oxide: role of cerium and hydrogen peroxide to enhance the photocatalytic degradation of endocrine disrupting compounds, Mater. Sci. Semicond. Process. 39 (2015) 807-816.   DOI
39 A.P. Roth, J.B. Webb, D.F. Williams, Absorption edge shift in ZnO thin films at high Carrier densities, Solid State Commun. 39 (1981) 1269-1271.   DOI
40 J. Wang, T. Fang, L. Zhang, J. Feng, Z. Li, Z. Zou, Effects of oxygen doping on optical band gap and band edge positions of $Ta_3N_5$ photocatalyst: a GGA+ U calculation, J. Catal. 309 (2014) 291-299.   DOI
41 S.C. Jain, J.M. McGregor, D.J. Roulston, Band-gap narrowing in novel III-V semiconductors, J. Appl. Phys. 68 (1990) 3747-3749.   DOI
42 J.M.D. Coey, M. Venkatesan, Half-metallic ferromagnetism: example of $CrO_2$, J. Appl. Phys. 91 (2002) 8345-8350.   DOI
43 K. Sato, P.H. Dederichs, Y.H. Katayama, Curie temperatures of III-V diluted magnetic semiconductors calculated from first principles, Europhys. Lett. 61 (2003) 403-408.   DOI
44 K. Sato, L. Bergqvist, J. Kudrnovsky, P.H. Dederichs, O. Eriksson, I. Turek, B. Sanyal, G. Bouzerar, H. Katayama-Yoshida, V.A. Dinh, T. Fukushima, H. Kizaki, R. Zeller, First-principles theory of dilute magnetic semiconductors, Rev. Mod. Phys. 82 (2010) 1633-1690.   DOI
45 C. Zener, Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure, Phys. Rev. 82 (1951) 403-405.   DOI
46 C. Theivarasu, T. Indumathi, Effect of rare earth metal ion $Ce^{3+}$, on the structural, optical and magnetic properties of ZnO nanoparticles synthesized by the co-precipitation method, J. Mater. Sci. Mater. Electron. 28 (2017) 3664-3671.   DOI