• Title/Summary/Keyword: Li anode

Search Result 410, Processing Time 0.043 seconds

Fabrication of IZO thin films for flexible organic light emitting diodes by RF magnetron sputtering

  • Jun, D.G.;Cho, H.H.;Jo, D.B.;Lee, K.M.
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.260-264
    • /
    • 2012
  • We have investigated the effect of ambient gases on the structural, electrical, and optical characteristics of IZO thin films intended for use as anode contacts in the organic light emitting diodes (OLED) devices. These IZO thin films were deposited on the PES film by radio frequency (RF) magnetron sputtering under different ambient gases (Ar, Ar + O2, and Ar + H2) at room temperature. In order to investigate the influences of the ambient gases, the flow rate of oxygen and hydrogen in argon has been changed from 0.1 sccm to 0.5 sccm, respectively. All the IZO thin film has an (222) preferential orientation regardless of ambient gases. The electrical resistivity of the IZO film increased with increasing O2 flow rate, whereas the electrical resistivity decreased sharply under an Ar + H2 atmosphere and was nearly similar regardless of the H2 flow rate. The change of electrical resistivity with changes in the ambient gas composition was mainly interpreted in terms of the charge carrier concentration rather than the charge carrier mobility. All the films showed the average transmittance over 85% in the visible range. The OLED device was fabricated with different IZO substrates made with the configuration of IZO/α-NPD/DPVB/Alq3/LiF/Al in order to elucidate the performance of the IZO substrate. The current density and the luminance of OLED devices with IZO thin films deposited in 0.5 sccm H2 ambient gas are the highest amongst all other films.

Electrochemical Reduction Process for Pyroprocessing (파이로프로세싱을 위한 전해환원 공정기술 개발)

  • Choi, Eun-Young;Hong, Sun-Seok;Park, Wooshin;Im, Hun Suk;Oh, Seung-Chul;Won, Chan Yeon;Cha, Ju-Sun;Hur, Jin-Mok
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.279-288
    • /
    • 2014
  • Nuclear energy is expected to meet the growing energy demand while avoiding CO2 emission. However, the problem of accumulating spent fuel from current nuclear power plants which is mainly composed of uranium oxides should be addressed. One of the most practical solutions is to reduce the spent oxide fuel and recycle it. Next-generation fuel cycles demand innovative features such as a reduction of the environmental load, improved safety, efficient recycling of resources, and feasible economics. Pyroprocessing based on molten salt electrolysis is one of the key technologies for reducing the amount of spent nuclear fuel and destroying toxic waste products, such as the long-life fission products. The oxide reduction process based on the electrochemical reduction in a LiCl-$Li_2O$ electrolyte has been developed for the volume reduction of PWR (Pressurized Water Reactor) spent fuels and for providing metal feeds for the electrorefining process. To speed up the electrochemical reduction process, the influences of the feed form for the cathode and the type of anode shroud on the reduction rate were investigated.

Fabrication and Characterization of Polymer Light Emitting Diodes by Using PFO/PFO:MEH-PPV Double Emitting Layer (PFO/PFO:MEH-PPV 이중 발광층을 이용한 고분자 유기발광다이오드의 제작과 특성 연구)

  • Chang, Young-Chul;Shin, Sang-Baie
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.2
    • /
    • pp.23-28
    • /
    • 2008
  • To improve the external quantum efficiency by means of the optimization of the polymer light emitting diodes(PLEDs) structure, the PLED with ITO/PEDOT:PSS/(PFO)/PFO:MEH-PPV/LiF/Al structure were fabricated and investigated the electrical and optical properties for the prepared devices. ITO(indium tin oxide) and PEDOT:PSS [poly (3,4-ethylenedioxythiophene): poly(styrene sulfolnate)] were used as transparent anode film and hole transport materials, respectively. PFO[poly(9,9-dioctylfluorene)] and MEHPPV[poly(2-methoxy-5(2-ethylhe xoxy)-1,4-phenylenevinyle)] were used as the light emitting host and dopant materials. The doping concentration of MEH-PPV was 9wt% with thickness of about $400{\AA}$. We investigated the dependence of the PFO thickness ranging from $200{\AA}$ to $300{\AA}$ on the electrical, optical properties of PLEDs. Among prepared PLED devices with different PFO thicknesses, the highest value of the luminance was obtained for the PLED device with $250{\AA}$ in thickness. As a result, the current density and luminance ware found to be about $400mA/cm^2$ and $1500cd/m^2$ at 13V, respectively. In addition, the luminance and current efficiency of PLED device with double emitting layer (PFO/PFO:MEH-PPV) were improved about 3 times compared with the one with single emitting layer (PFO:MEH-PPV).

  • PDF

Numerical Simulation of Lithium-Ion Batteries for Electric Vehicles (전기 자동차용 리튬이온전지 개발을 위한 수치해석)

  • You, Suk-Beom;Jung, Joo-Sik;Cheong, Kyeong-Beom;Go, Joo-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.649-656
    • /
    • 2011
  • A model for the numerical simulation of lithium-ion batteries (LIBs) is developed for use in battery cell design, with a view to improving the performances of such batteries. The model uses Newman-type electrochemical and transfer $theories^{(1,2)}$ to describe the behavior of the lithium-ion cell, together with the Levenberg-Marquardt optimization scheme to estimate the performance or design parameters in nonlinear problems. The mathematical model can provide an insight into the mechanism of LIB behavior during the charging/discharging process, and can therefore help to predict cell performance. Furthermore, by means of least-squares fitting to experimental discharge curves measured at room temperature, we were able to obtain the values of transport and kinetic parameters that are usually difficult to measure. By comparing the calculated data with the life-test discharge curves (SB LiMotive cell), we found that the capacity fade is strongly dependent on the decrease in the reaction area of active materials in the anode and cathode, as well as on the electrolyte diffusivity.

The Cycling Performance of Graphite Electrode Coated with Tin Oxide for Lithium Ion Battery (리튬이온전지용 주석산화물이 도포된 흑연전극의 싸이클 성능)

  • Kang, Tae-Hyuk;Kim, Hyung-Sun;Cho, Won-Il;Cho, Byung-Won;Ju, Jeh-Beck
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.2
    • /
    • pp.52-56
    • /
    • 2002
  • Tin oxide was coated on graphite particle by sol-gel method and an electrode with this material having microcrystalline structure for lithium ion battery was obtained by heat treatment in the range $400-600^{\circ}C$. The content of tin oxide was controlled within the range of $2.25wt\%\~11.1wt\%$. The discharge capacity increased with the content of tin oxide and also initial irreversible capacity increased. The discharge capacity of tin oxide electrode showed more than 350 mAh/g at the initial cycle and 300 mAh/g after the 30th cycle in propylene carbonate(PC) based electrolyte whereas graphite electrode without surface modification showed 140 mAh/g. When the charge and discharge rate was changed from C/5 to C/2, The discharge capacity of tin oxide and graphite electrode showed $92\%\;and\;77\%$ of initial capacity, respectively. It has been considered that such an enhancement of electrode characteristics was caused because lithium $oxide(Li_2O)$ passive film formed from the reaction between tin oxide and lithium ion prevented the exfoliation of graphite electrode and also reduced tin enhanced the electrical conduction between graphite particles to improve the current distribution of electrode.

Characterization of SEI layer for Surface Modified Cathode of Lithium Secondary Battery Depending on Electrolyte Additives (전해질 첨가제에 따른 graphite 음극의 SEI분석 및 전기 화학적 특성 고찰)

  • Lee, Sung Jin;Cha, Eun Hee;Lim, Soo A
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.3
    • /
    • pp.69-79
    • /
    • 2016
  • Lithium ion battery with high energy density is expanding its application area to electric automobile and electricity storage field beyond existing portable electric devices. Such expansion of an application field is demanding higher characteristic and stable long life characteristic of an anode material, the natural graphite that became commercialized in lithium ion battery. This thesis produced cathode by using natural graphite anode material, analyzed creation of the cathode SEI film created due to initial reaction by using electrolyte additives, VC (vinylene carbonate), VEC (vinyl ethylene carbonate), and FEC (fluoroethylene carbonate), and considered correlation with the accompanying electrochemical transformation. This study compared and analyzed the SEI film variation of natural graphite cathode according to the electrolyte additive with SEI that is formed at the time of initial filling and cathode of $60^{\circ}C$ life characteristic. At the time of initial filling, the profile showed changes due to the SEI formation, and SEI was formed in No-Additive in approximately 0.9 V through EVS, but for VC, VEC, and FEC, the formation reaction was created above 1 V. In $60^{\circ}C$ lifespan characteristic evaluation, the initial efficiency was highest in No-Additive and showed high contents percentage, but when cycle was progressed, the capacity maintenance rate decreased more than VC and FEC as the capacity and efficiency at the time of filling decreased, and VEC showed lowest performance in efficiency and capacity maintenance rate. Changes of SEI could not be verified through SEM, but it was identified that as the cycle of SEI ingredients was progressed through FT-IR, ingredients of Alkyl carbonate ($RCO_2Li$) affiliation of the $2850-2900cm^{-1}$ was maintained more solidly and the resistance increased as cycle was progressed through EIS, and specially, it was identified that the resistance due to No-Additive and SEI of VEC became very significant. Continuous loss of additives was verified through GC-MS, and the loss of additives from partial decomposition and remodeling of SEI formed the non-uniform surface of SEI and is judged to be the increase of resistance.

Development of Slurry Flow Control and Slot Die Optimization Process for Manufacturing Improved Electrodes in Production of Lithium-ion Battery for Electric Vehicles (전기자동차 리튬이온 배터리 제조공정에서 Loading Level 산포최소화 코팅을 통한 전극 품질개선에 관한 연구)

  • Jang, Chan-Hee;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.14-20
    • /
    • 2018
  • Electric vehicles are environmentally friendly because they emit no exhaust gas, unlike gasoline automobiles. However, since they are driven by the electric power from batteries, the distance they can travel based on a single charge depends on their energy density. Therefore, the lithium-ion battery having a high energy density is a good candidate for the batteries of electric vehicles. Since the electrode is an essential component that governs their efficiency, the electrode manufacturing process plays a vital role in the entire production process of lithium-ion batteries. In particular, the coating process is a critical step in the manufacturing of the electrode, which has a significant influence on its performance. In this paper, we propose an innovative process for improving the efficiency and productivity of the coating process in electrode manufacturing and describe the equipment design method and development results. Specifically, we propose a design procedure and development method in order to improve the core plate coating quality by 25%, using a technology capable of reducing the assembly margin due to its high output/high capacity and improving the product capacity quality and assembly process yield. Using this method, the battery life of the lithium-ion battery cell was improved. Compared with the existing coating process, the target loading level is maintained and dispersed to maintain the anode capacity (${\pm}0.4{\rightarrow}{\pm}0.3mg/cm^2r$ reduction).

유리화 비정형 탄소(vitreous carbon)를 이용하여 제작한 전계방출 소자의 균일성 증진방법

  • 안상혁;이광렬
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.53-53
    • /
    • 1999
  • 전계방출을 이용한 평판 표시장치는 CRT가 가진 장점을 모두 갖는 동시에 얇고 가벼우며 낮은 전력소모로 완벽한 색을 구현할 수 있는 차세대 표시장치로서 이에 대한 여국가 활발히 이루어지고 있다. 여기에 사용되는 음극물질로서 실리콘이나 몰리 등을 팁모양으로 제작하여 사용해 왔다. 하지만 잔류가스에 의한 역스퍼터링이나 화학적 반응에 의해서 전계방출 성능이 점차 저하되는 등의 해결해야할 많은 문제가 있다. 이러한 문제들을 해결하기 위하여 탄소계 재료로서 다이아몬드, 다이아몬드상 카본 등을 이용하려는 노력이 진행되어 왔다. 이중 유리화 비정형 탄소는 다량의 결함을 가지고 있는 유리질의 고상 탄소 재로로서, 전기전도도가 우수하면서 outgassing이 적고 기계적 강도가 뛰어나며 고온에서도 화학적으로 안정하여 전계방출 소자의 음극재료로서 알맞은 것으로 생각된다. 유리화 비정형 탄소가루를 전기영동법으로 기판에 코팅하여 전계방출 소자를 제작하였다. 전기영동 용액으로 이소프로필알코올에 질산마그네슘과 소량의 증류수, 유리화 비정형 탄소분말을 섞어주었고 기판으로는 몰리(Mo)가 증착된 유리를 사용하였다. 균일한 증착을 위해서 증착후 역전압을 걸어 주는 방법과 증착 후 플라즈마 처리를 하는 등의 여러 가지 방법을 사용했다. 전계방출 전류는 1$\times$10-7Torr이사에서 측정하였다. 1회 제작된 용액으로 반복해서 증착한 횟수에 따라 표면의 거치기, 입자의 분포, 전계방출 측정 결과 등의 차이가 관찰되었다. 발광이미지는 전압에 따라 변화하였고, 균일한 발광을 관찰하기 위해서 오랜 시간동안 aging 과정을 거쳐야 했다. 그리고 구 모양의 양극을 사용해서 위치를 변화시키며 시동 전기장을 관찰하여 위치에 따른 전계방출의 차이를 조사하여 발광의 균일성을 알 수 있었다.on microscopy로 분석하였으며 구조 분석은 X-선 회절분석, X-ray photoelectron spectroscopy 그리고Auger electron spectroscope로 하였다. 증착된 산화바나듐 박막의 전기화학적 특성을 분석하기 위하여 리튬 메탈을 anode로 하고 EC:DMC=1:1, 1M LiPF6 액체 전해질을 사용한 Half-Cell를 구성하여 200회 이상의 정전류 충 방전 시험을 행하였다. Half-Cell test 결과 박막의 결정성과 표면상태에 따라 매우 다른 전지 특성을 나타내었다.도상승율을 갖는 경우가 다른 베이킹 시나리오 모델에 비해 효과적이라 생각되며 초대 필요 공급열량은 200kW 정도로 산출되었다. 실질적인 수치를 얻기 위해 보다 고차원 모델로의 해석이 필요하리라 생각된다. 끝으로 장기적인 관점에서 KSTAR 장치의 베이킹 계획도 살펴본다.습파라미터와 더불어, 본 연구에서 새롭게 제시된 주기분할층의 파라미터들이 모형의 학습성과를 높이기 위해 함께 고려된다. 한편, 이러한 학습과정에서 추가적으로 고려해야 할 파라미터 갯수가 증가함에 따라서, 본 모델의 학습성과가 local minimum에 빠지는 문제점이 발생될 수 있다. 즉, 웨이블릿분석과 인공신경망모형을 모두 전역적으로 최적화시켜야 하는 문제가 발생한다. 본 연구에서는 이 문제를 해결하기 위해서, 최근 local minimum의 가능성을 최소화하여 전역적인 학습성과를 높여 주는 인공지능기법으로서 유전자알고리즘기법을 본 연구이 통합모델에 반영하였다. 이에 대한 실증사례 분석결과는 일일 환율예측문제를 적용하였을 경우, 기존의 방법론보다 더 나운 예측성과를 타나내었다.pective" to workflow architectural discussions. The vocabulary suggested

  • PDF

Electrochemical Characteristics of the Silicon Thin Films on Copper Foil Prepared by PECVD for the Negative Electrodes for Lithium ion Rechargeable Battery (PECVD법으로 구리 막 위에 증착된 실리콘 박막의 이차전지 음전극으로서의 전기화학적 특성)

  • Shim Heung-Taek;Jeon Bup-Ju;Byun Dongjin;Lee Joong Kee
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.4
    • /
    • pp.173-178
    • /
    • 2004
  • Silicon thin film were synthesized from silane and argon gas mixture directly on copper foil by rf PECVD and then lithium ion batteries were prepared from them employed as the negative electrodes without any further treatment. In the present study, two different kinds of silicon thin films, amorphous silicon and copper silicide were prepared by changing deposition temperature. Amorphous silicon film was prepared below $200^{\circ}C$, but copper silicide film with granular shape was formed by the reaction between silicon radical and diffused copper ions under elevating temperature above $400^{\circ}C$. The amorphous silicon film gives higher capacity than copper silicide, but the capacity decreases sharply with charge-discharge cycling. This is possibly due to severe volume changes. The cyclability is improved, however, by employing the copper silicide as a negative electrode. The copper silicide plays an important role as an active material of the electrode, which mitigates volume change cause by the existence of silicon and copper chemical bonding and provides low electrical resistance as well.

Silicon/Carbon Composites Having Bimodal Mesopores for High Capacity and Stable Li-Ion Battery Anodes (고용량 고안정성 리튬 이차전지 음극소재를 위한 이중 중공을 갖는 실리콘/탄소 복합체의 설계)

  • Park, Hongyeol;Lee, Jung Kyoo
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.223-231
    • /
    • 2021
  • In order to address many issues associated with large volume changes of silicon, which has very low electrical conductivity but offers about 10 times higher theoretical capacity than graphite (Gr), a silicon nanoparticles/hollow carbon (SiNP/HC) composite having bimodal-mesopores was prepared using silica nanoparticles as a template. A control SiNP/C composite without a hollow structure was also prepared for comparison. The physico-chemical and electrochemical properties of SiNP/HC were analyzed by X-ray diffractometry, X-ray photoelectron spectroscopy, nitrogen adsorption/desorption measurements for surface area and pore size distribution, scanning electron microscopy, transmission electron microscopy, galvanostatic cycling, and cyclic voltammetry tests to compare them with those of the SiNP/C composite. The SiNP/HC composite showed significantly better cycle life and efficiency than the SiNP/C, with minimal increase in electrode thickness after long cycles. A hybrid composite, SiNP/HC@Gr, prepared by physical mixing of the SiNP/HC and Gr at a 50:50 weight ratio, exhibited even better cycle life and efficiency than the SiNP/HC at low capacity. Thus, silicon/carbon composites designed to have hollow spaces capable of accommodating volume expansion were found to be highly effective for long cycle life of silicon-based composites. However, further study is required to improve the low initial coulombic efficiency of SiNP/HC and SiNP/HC@Gr, which is possibly because of their high surface area causing excessive electrolyte decomposition for the formation of solid-electrolyte-interface layers.