DOI QR코드

DOI QR Code

Numerical Simulation of Lithium-Ion Batteries for Electric Vehicles

전기 자동차용 리튬이온전지 개발을 위한 수치해석

  • Received : 2010.12.13
  • Accepted : 2011.03.13
  • Published : 2011.06.01

Abstract

A model for the numerical simulation of lithium-ion batteries (LIBs) is developed for use in battery cell design, with a view to improving the performances of such batteries. The model uses Newman-type electrochemical and transfer $theories^{(1,2)}$ to describe the behavior of the lithium-ion cell, together with the Levenberg-Marquardt optimization scheme to estimate the performance or design parameters in nonlinear problems. The mathematical model can provide an insight into the mechanism of LIB behavior during the charging/discharging process, and can therefore help to predict cell performance. Furthermore, by means of least-squares fitting to experimental discharge curves measured at room temperature, we were able to obtain the values of transport and kinetic parameters that are usually difficult to measure. By comparing the calculated data with the life-test discharge curves (SB LiMotive cell), we found that the capacity fade is strongly dependent on the decrease in the reaction area of active materials in the anode and cathode, as well as on the electrolyte diffusivity.

자동차용 리튬이온전지(lithium-ion batteries)의 성능향상 및 효과적인 셀 설계를 위한 준 2 차원 (pseudo-2-dimension) 해석 모델을 개발하였다. 전지 내부에 리튬, 리튬이온, 전자의 거동 및 계면에서 전해질과 활물질의 리튬이온 농도와 전기적 포텐셜 차이에 의한 전기화학 반응량 등을 계산할 수 있는 $Newman^{(1,2)}$ 모델을 기반에 변수 추정을 위한 최적화 기능을 추가하였다. 이 전기화학모델을 이용해 설계 변수, 재료의 물성 값 등의 의한 충/방전 특성을 계산할 수 있으며, 위치와 시간에 따른 전위, 농도, 생성전류량 등을 알 수 있다. 역으로 최적화 기능을 이용하여 실험에서 얻은 충/방전 곡선과 계산 값의 오차를 최소화하는 방법으로 측정이 어려운 물성값 추정이 가능하며 이를 이용하여 셀 성능 열화에 영향을 주는 변수 및 열화도를 예측할 수 있다. SB 리모티브에서 측정된 열화 과정의 방전 곡선들을 이용하여 최적화 해석을 수행하여 전지의 반복수명열화가 음극 및 양극활물질의 반응면적 및 전해질에 확산계수의 열화에 의한 것임을 알 수 있었다.

Keywords

References

  1. Fuller, T. F., Doyle, M. and Newman, J., 1994, "Simulation and Optimization of the Dual Lithium Ion Insertion Cell." J. Electrochem. Soc., 141, 1. https://doi.org/10.1149/1.2054684
  2. Doyle, Fuller, M., T. F. and Newman, J., 1993, "Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell." J. Electrochem. Soc., 140, 1526. https://doi.org/10.1149/1.2221597
  3. Gu, W.B., Wang, C.Y., Li, S.M., Geng, M.M. and Liaw, B.Y., 1999, "Modeling Discharge and Charge Characteristics of Nickel-Metal Hydride Batteries," Electrochimica Acta, Vol. 44, pp. 4525-4541. https://doi.org/10.1016/S0013-4686(99)00187-5
  4. Smith, K. and Wang, C.-Y., 2006, "Solid-State Diffusion Limitations on Pulse Operation of a Lithium Ion Cell for Hybrid Electric Vehicles," J. Power Sources 161 (2006), pp. 628-639. https://doi.org/10.1016/j.jpowsour.2006.03.050
  5. Sikha, G., Popov, B. N. and White, R. E., 2004, "Parameter Estimates for a PEMFC Cathode," J. Electrochem. Soc., 151, A1035.
  6. Santhanagopalan, S., Zhang, Q., Kumaresan, K. and White, R. E., 1998, "Parameter Estimation and Life Modeling of Lithium-Ion Cells", J. Electrochem. Soc., 155 (4), A345-A353.
  7. Patankar, S.V., 1980, "Numerical Heat Transfer and Fluid Flow," Hemisphere, Washington, DC.

Cited by

  1. Development and Evaluation of Multi-string Power Balancing System for Solar Streetlight vol.25, pp.12, 2012, https://doi.org/10.4313/JKEM.2012.25.12.1021
  2. Electrochemical Simulation for Limited-Discharge Current Prediction of Li-ion Secondary Cell Using High-Rate Discharge vol.39, pp.8, 2015, https://doi.org/10.3795/KSME-A.2015.39.8.807
  3. Numerical Investigation of the Discharge Efficiency of a Vanadium Redox Flow Battery with Varying Temperature and Ion Concentration vol.40, pp.12, 2016, https://doi.org/10.3795/KSME-B.2016.40.12.769
  4. Discharged Maximum Current Density of Vanadium Redox Flow Battery with Increased Electrolyte Flow Rate vol.40, pp.12, 2016, https://doi.org/10.3795/KSME-B.2016.40.12.777