• Title/Summary/Keyword: Li Polymer Battery

Search Result 155, Processing Time 0.05 seconds

Semi-interpenetrating Solid Polymer Electrolyte for LiCoO2-based Lithium Polymer Batteries Operated at Room Temperature

  • Nguyen, Tien Manh;Suk, Jungdon;Kang, Yongku
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.250-255
    • /
    • 2019
  • Poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) show promise for improving the lithium ion battery safety. However, due to oxidation of the PEO group and corrosion of the Al current collector, PEO-based SPEs have not previously been effective for use in $LiCoO_2$ (LCO) cathode materials at room temperature. In this paper, a semi-interpenetrating polymer network (semi-IPN) PEO-based SPE was applied to examine the performance of a LCO/SPE/Li metal cell at different voltage ranges. The results indicate that the SPE can be applied to LCO-based lithium polymer batteries with high electrochemical performance. By using a carbon-coated aluminum current collector, the Al corrosion was mostly suppressed during cycling, resulting in improvement of the cell cycle stability.

Electrochamical Properties of $LiFePO_4$ Electrodes for Lithium Polymer Battery (리튬 폴리머 전지 $LiFePO_4$의 전기화학적 특성)

  • Kong, Ming-Zhe;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.5-9
    • /
    • 2005
  • $LiFePO_4$ is a potential candidate for the cathode material of the lithium polymer batteries. $LiFePO_4$ cathode active materials were synthesized by coating on the $LiFePO_4$ was tried using $TiO_2$ and corbon in oreder to increase cyclic performance and electronic conductivity. Highly dispersed on the particles enhances the electronic conductivity and increases the capacity. For lithium polymer battery applications, $LiFePO_4$/SPE/Li and $LiFePO_4$-$TiO_2$/SPE/Li 'cells were characterized electrochemically by cyclic volatammetry and charge/discharge cycling. The $LiFePO_4$-carbon-$TiO_2$ cathode in PVDF-PC-EC-$LiCIO_4$ electrolyte showed high capacity at high current density.

  • PDF

Charge/Discharge Characteristics Analysis of Li-Polymer battery (리튬 폴리머 전지의 충방전 특성해석)

  • 최해룡;강병희;목형수;최규하;신우석
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.222-225
    • /
    • 1999
  • Started upon it discovery by Wright et al in 1973, studies on the solid polymer electrolyte are being carried out vigorously. So, models of Li-polymer battery have been developed through R-L-C components combination and P-spice functional block in this paper. The impedance characteristics of Li-polymer battery with R-L-C components are presented. Simulation results using P-spice functional model are compared with measured charge/discharge characteristics.

  • PDF

Performance Characteristics of Li-ion Battery and Supercapacitor Hybrid Cell for High Power / Low Temperature Discharge (고출력/저온 방전을 위한 리튬전지와 슈퍼캐패시터 하이브리드 셀의 방전 거동 특성 연구)

  • Jang, Woojin;Hong, Seung-Chul;Hong, Jung-Pyo;Hwang, Taeseon;Oh, Joon-Suk;Ko, Sungyeon;Lee, Gaeun;Ahn, Kyunyoung;Kim, Hyunsoo;Suhr, Jonghwan;Nam, Jae-Do
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.49-57
    • /
    • 2013
  • In this study, we fabricated a parallelly connected Li-ion battery/supercapacitor hybrid cell to combine the advantageous characteristics of Li-ion battery and supercapacitor, high energy density and high power density, respectively, and investigated its discharging characteristics over a wide temperature range from -40 to $25^{\circ}C$. At the initial state of discharging of the hybrid cell, the power was mostly provided by the supercapacitor and then the portion of the Li-ion battery was gradually increased. By installing a switching system into the hybrid cell, which controls the discharging sequence of Li-ion battery and supercapacitor, the maximum power was improved by 40% compared with non switching system. In addition at low temperatures, the power and discharging time of the hybrid cell were significantly enhanced compared to a battery-alone system. The hybrid cell is expected to be applied in electric vehicles and small domestic appliances that require high power at initial discharging state.

Separators far Li-Ion Secondary Batteries (리튬이온 2차전지용 분리막)

  • Nam Sang Yong;Lee Young Moo;Lee Chang Hyun;Park Ho Bum;Rhim Ji Won;Ha Seong Yong;Kang Jong Seok
    • Membrane Journal
    • /
    • v.14 no.4
    • /
    • pp.263-274
    • /
    • 2004
  • The polymeric membrane, a component of battery devices such as Li-ion battery (LIB) and Li-polymer battery (LPB), is a typical material in which the carrier mobility dominates the battery performance. In this paper, the state-of-the-art of membranes for secondary battery is described in terms of membrane properties. Several prerequisites, which are related to stability of battery devices, are discussed to design and prepare suitable polymeric membranes. In addition, physical requirements of membranes and their measurement methods are described to develop applicable polymeric membranes in membrane preparation processes.

A Study on Electrical Modeling for Charge/Discharge Analysis of Li-Polymer Battery (리튬폴리머전지의 충/방전 특성해석을 위한 진기적모델링에 관한 연구)

  • 최해룡;반한식;목형수;신우석;고장면
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.5
    • /
    • pp.435-442
    • /
    • 2000
  • Started upon Its discovery by Wright et al in 1773, studies on the solid polymer electrolyte are being carried out vigorously. So, models of Li-polymer battery have been developed through R-L-C components combination and PSpice functional block in this parer. The impedance characteristics of Li-polymer battery with R-L-C components are presented. Simulation results using PSpice functional model are compared with measured charge/discharge characteristics. Also, as to the number of cycle(charge/discharge), coulomb efficiency of Li-polymer is evaluated through experimental results.

  • PDF

A Study on Advanced Lithium-Ion Battery with Polyurethane-Based Gel Polymer Electrolyte (Polyurethane기 겔폴리머전해질을 이용한 Advanced Lithium-Ion Battery에 관한 연구)

  • 김현수;문성인;윤문수;김상필
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.252-254
    • /
    • 2002
  • In this study, polyurethane acrylate macromer was synthesized and it was used in a gel polymer electrolyte, and then its electrochemical performances were evaluated. LiCoO$_2$/GPE/MCF cells were also prepared and their performances depending on discharge currents and temperatures were evaluated. ionic conductivity of the gel polymer electrolyte with PUA at room temperature and -20$^{\circ}C$ was ca. 4.5 x 10$\^$-3/ S/cm and 1.7${\times}$10$\^$-3/ S/cm, respectively. GPE was stable electrochemically up to 4.5 V vs. Li/Li$\^$+/. LiCoO$_2$/GPE/MCF cell showed a good high-rate and a low-temperature performance.

  • PDF

The Effect of Plasticizer and Zeolite Addition on the Interface between Polymer Electrolyte Based on Poly(ethylene oxide) and Li Electrode. (이온전도성 Poly(ethylene oxide) 고분자 전해질과 Li과의 계면에 미치는 가소제 및 Zeolite의 첨가효과)

  • Kim, J.U.;Gu, H.B.;Jin, B.S.;Moon, S.I.;Yun, M.S.
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.205-208
    • /
    • 1994
  • The purpose of this study is to research and develop solid polymer electrolyte(SPE) for Li secondary battery. PEO-$LiClO_4$ electrolyte with plasticizer is very unstable. Passivation phenomena in polymer electrolyte cell was described by the SPL model. The time dependance of the impedance indicates that a passivation layer grows rapidly on the Li surface. However, the growing of passivation layer on the Li surface can be restrained by addition of zeolite to the PEO electrolyte. It suggested that addition of zeoliteto to the PEO-$LiClO_4$ electrolyte effectively controls the formation of a passivation layer on Li electrode.

  • PDF

Behavior of $Li^{+}$ in PAN/PVDF based Polymer Electrolyte for Lithium Polymer Battery (리튬 폴리머전지용 PAN/PVDF계 고분자 전해질의 리튬 이온 거동)

  • 이재안;김상기;김종욱;구할본;박계춘
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.540-543
    • /
    • 2000
  • The purpose of this study is to research and develop solid polymer electrolyte(SPE) for Li polymer battery. The temperature dependence of conductivity, impedance spectroscopy and electrochemical properties of PAN/PVDF electrolytes as a function of a mixed ratio were reported for PAN/PVDF based polymer electrolyte films, which were prepared by thermal gellification method of preweighed PAN/PVDF, plasticizer and Li salt. The conductivity of PAN/PVDF electrolytes was $10^{-3}$S/cm. $PAN_{10}$$PVDF_{10}$$LiClO_4$$PC_{5}$$EC_{5}$ electrolyte has the better conductivity compared to others. The interfacial resistance behavior between the lithium electrode and PAN/PVDF based polymer electrolyte has also been investigated and compare with that between the lithium electrode and the PAN/PVDF based polymer electrolyte.

  • PDF

A SOC Estimation using Kalman Filter for Lithium-Polymer Battery (칼만 필터를 이용한 리튬-폴리머 배터리의 SOC 추정)

  • Jang, Ki-Wook;Chung, Gyo-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.222-229
    • /
    • 2012
  • The SOC estimation method based on Kalman Filter(KF) requires the accurate battery model to express the electrical characteristics of the battery. However, the performance of KF SOC estimator can hardly be improved because of the nonlinear characteristic of the battery. This paper proposes the new KF SOC estimator of Lithium-Polymer Battery(LiPB), which considers the variation of parameters based on the hysteresis effect, the magnitude of SOC, the charging/discharging mode and the on/off load conditions. The proposed SOC estimation method is verified with the PSIM simulation combined the experimental data of the LiPB.