Browse > Article
http://dx.doi.org/10.5229/JECST.2019.10.2.250

Semi-interpenetrating Solid Polymer Electrolyte for LiCoO2-based Lithium Polymer Batteries Operated at Room Temperature  

Nguyen, Tien Manh (Center for Advanced Battery Materials, Advanced Materials Division, KRICT)
Suk, Jungdon (Center for Advanced Battery Materials, Advanced Materials Division, KRICT)
Kang, Yongku (Center for Advanced Battery Materials, Advanced Materials Division, KRICT)
Publication Information
Journal of Electrochemical Science and Technology / v.10, no.2, 2019 , pp. 250-255 More about this Journal
Abstract
Poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) show promise for improving the lithium ion battery safety. However, due to oxidation of the PEO group and corrosion of the Al current collector, PEO-based SPEs have not previously been effective for use in $LiCoO_2$ (LCO) cathode materials at room temperature. In this paper, a semi-interpenetrating polymer network (semi-IPN) PEO-based SPE was applied to examine the performance of a LCO/SPE/Li metal cell at different voltage ranges. The results indicate that the SPE can be applied to LCO-based lithium polymer batteries with high electrochemical performance. By using a carbon-coated aluminum current collector, the Al corrosion was mostly suppressed during cycling, resulting in improvement of the cell cycle stability.
Keywords
Li polymer battery; Poly(ethylene oxide); Solid polymer electrolytes; Semi-interpenetrating network; Al Corrosion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J.B. Goodenough, Y. Kim, Chem. Mater., 2009, 22(3), 587-603.   DOI
2 N.H. Idris, M.M. Rahman, J.-Z. Wang, H.-K. Liu, J. Power Sources, 2012, 201, 294-300.   DOI
3 F. Cheng, J. Liang, Z. Tao, J. Chen, Adv. Mater., 2011, 23(15), 1695-1715.   DOI
4 V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy Environ. Sci., 2011, 4(9), 3243-3262.   DOI
5 L. Long, S. Wang, M. Xiao, Y. Meng, J. Mater. Chem. A, 2016, 4(26), 10038-10069.   DOI
6 D.E. Fenton, J.M. Parker, P.V. Wright, Polymer (Guildf), 1973, 14, 589.
7 R. Taslim, M.Y.A. Rahman, M.M. Salleh, A.A. Umar, A. Ahmad, Ionics (Kiel), 2010, 16(7), 639-644.   DOI
8 A. Ghosh, C. Wang, P. Kofinas, J. Electrochem. Soc., 2010, 157(7), A846-A849.   DOI
9 K. Xu, Chem. Rev., 2004, 104(10), 4303-4418.   DOI
10 L. Wang, X. Li, W. Yang, Electrochim. Acta, 2010, 55(6), 1895-1899.   DOI
11 L.M. Bronstein, C. Joo, R. Karlinsey, A. Ryder, J.W. Zwanziger, Chem. Mater., 2001, 13(10), 3678-3684.   DOI
12 T. Niitani, M. Amaike, H. Nakano, K. Dokko, K. Kanamura, J. Electrochem. Soc., 2009, 156(7), A577-A583.   DOI
13 D. He, S.Y. Cho, D.W. Kim, C. Lee, Y. Kang, Macromolecules, 2012, 45(19), 7931-7938.   DOI
14 M. Ueno, N. Imanishi, K. Hanai, T. Kobayashi, A. Hirano, O. Yamamoto, Y. Takeda, J. Power Sources, 2011, 196(10), 4756-4761.   DOI
15 D. He, D.W. Kim, J.S. Park, S.Y. Cho, Y. Kang, J. Power Sources, 2013, 244, 170-176.   DOI
16 P. Basak, Solid State Ionics, 2004, 167(1-2), 113-121.   DOI
17 Y. Xia, K. Tatsumi, T. Fujieda, P.P. Prosini, T. Sakai, J. Electrochem. Soc., 2000, 147(6), 2050-2056.   DOI
18 Q. Li, Y. Takeda, N. Imanish, J. Yang, H.Y. Sun, O. Yamamoto, J. Power Sources, 2001, 97, 795-797.   DOI
19 J.R. Nair, M. Destro, F. Bella, G.B. Appetecchi, C. Gerbaldi, J. Power Sources, 2016, 306, 258-267.   DOI
20 H. Ben youcef, O. Garcia-Calvo, N. Lago, S. Devaraj, M. Armand, Electrochim. Acta, 2016, 220, 587-594.   DOI
21 Z. Wang, Z. Wang, H. Guo, W. Peng, X. Li, Ceram. Int., 2015, 41(1), 469-474.   DOI
22 H. Yang, K. Kwon, T.M. Devine, J.W. Evans, J. Electrochem. Soc., 2000, 147(12), 4399-4407.   DOI
23 R.-S. Kuhnel, A. Balducci, J. Power Sources, 2014, 249, 163-171.   DOI
24 K. Matsumoto, K. Inoue, K. Nakahara, R. Yuge, T. Noguchi, K. Utsugi, J. Power Sources, 2013, 231, 234-238.   DOI
25 H.-C. Wu, H.-C. Wu, E. Lee, N.-L. Wu, Electrochem. Commun., 2010, 12, 488-491.   DOI
26 T. Ma, G.-L. Xu, Y. Li, L. Wang, X. He, J. Zheng, J. Liu, M.H. Engelhard, P. Zapol, L.A. Curtiss, J. Jorne, K. Amine, Z. Chen, J. Phys. Chem. Lett., 2017, 8(5), 1072-1077.   DOI
27 I. Doberdo, N. Loffler, N. Laszczynski, D. Cericola, N. Penazzi, S. Bodoardo, G.-T. Kim, S. Passerini, J. Power Sources, 2014, 248, 1000-1006.   DOI
28 P. Swain, M. Viji, P.S.V. Mocherla, C. Sudakar, J. Power Sources, 2015, 293, 613-625.   DOI
29 H. Gao, T. Ma, T. Duong, L. Wang, X. He, I. Lyubinetsky, Z. Feng, F. Maglia, P. Lamp, K. Amine, Z. Chen, Mater. Today Energy, 2018, 7, 18-26.   DOI
30 C. Gerbaldi, J.R. Nair, G. Meligrana, R. Bongiovanni, S. Bodoardo, N. Penazzi, Electrochim. Acta, 2010, 55(4), 1460-1467.   DOI
31 S. Ohta, T. Kobayashi, J. Seki, T. Asaoka, J. Power Sources, 2012, 202, 332-335.   DOI