• Title/Summary/Keyword: Li:ZnO

Search Result 183, Processing Time 0.026 seconds

On the photorefractive resistance characteristics of lithium niobate single crystals with doping (Lithium niobate 단결정의 첨가 이온$(Zn^{2+},;Mg^{2+})$에 따른 광손상 특성에 관한 연구)

  • 김기현;심광보;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.1
    • /
    • pp.10-17
    • /
    • 1998
  • The characteristics of the lithium niobate single ($LiNbO_3$) crystals grown doped with $Mg^{2+}$ or $Zn^{2+}$ ions, which are well-known as the ions improving the photorefractive resistance of $LiNbO_3$, have been analysed in comparision with those of undoped $LiNbO_3$ crystal. In particular, $Zn^{2+}$ doping was estimated to increase the photorefractive resistance indirectly from the optical and electrical properties. Therefore, the $LiNbO_3$ crystals doped with ZnO could be used for high intensive laser device application.

  • PDF

Single crystals growth and properties of $LiNbO_{3}$ doped with MgO or ZnO : (I) Single crystals growth and their defect structure (MgO 또는 ZnO를 첨가한 $LiNbO_{3}$ 단결정 성장 및 특성 : (I) 단결정 성장 및 결함구조)

  • Cho, Hyun;Shim, Kwang-Bo;Auh, Keun-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.3
    • /
    • pp.368-376
    • /
    • 1996
  • $LiNbO_{3}$ single crystals (undoped, 5 mol% MgO-doped and 5 mol% ZnO-doped) were grown by the floating zone method which has the characteristics of a compositional homogeneity and uniform distribution of the dopants. The optimum growth condition was established experimentally and the defect structures such as domain structure, dislocation structure, slip band, and microtwins were characterized using a microscopic method.

  • PDF

Electrochemical Performance of LiMn2O4 Cathodes in Zn-Containing Aqueous Electrolytes

  • Kamenskii, Mikhail A.;Eliseeva, Svetlana N.;Volkov, Alexey I.;Kondratiev, Veniamin V.
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.177-185
    • /
    • 2022
  • Electrochemical properties of LiMn2O4 cathode were investigated in three types of Zn-containing electrolytes: lithium-zinc sulfate electrolyte (1M ZnSO4 / 2M Li2SO4), zinc sulfate electrolyte (2MZnSO4) and lithium-zinc-manganese sulfate electrolyte (1MZnSO4 / 2MLi2SO4 / 0.1MMnSO4). Cyclic voltammetry measurements demonstrated that LiMn2O4 is electrochemically inactive in pure ZnSO4 electrolyte after initial oxidation. The effect of manganese (II) additive in the zinc-manganese sulfate electrolyte on the electrochemical performance was analyzed. The initial capacity of LiMn2O4 is higher in presence of MnSO4 (140 mAh g-1 in 1 M ZnSO4 / 2 M Li2SO4 / 0.1 M MnSO4 and 120 mAh g-1 in 1 M ZnSO4 / 2MLi2SO4). The capacity increase can be explained by the electrodeposition of MnOx layer on the electrode surface. Structural characterization of postmortem electrodes with use of XRD and EDX analysis confirmed that partially formed in pure ZnSO4 electrolyte Zn-containing phase leads to fast capacity fading which is probably related to blocked electroactive sites.

Effects of Codoping with Fluorine on the Properties of ZnO Thin Films

  • Heo, Young-Woo;Norton, D.P.
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.11 s.294
    • /
    • pp.738-742
    • /
    • 2006
  • We report on the effects of co-doping with fluorine on properties of ZnO thin films grown by pulsed-laser deposition. The transport characteristics of Ag-F and Li-F codoped ZnO films were determined by Hall-effect measurements at room temperature. Ag-F codoped ZnO films showed n-type semiconducting behaviors. An ambiguous carrier type was observed in Li-F codoped ZnO films grown at a temperature of 500$^{\circ}C$ with the oxygen pressures of 20 and 200 mTorr. The qualities of the codoped ZnO films were studied by X-ray diffraction, atomic force microscopy, X-ray photoemission spectroscopy, and photoluminescence.

Effective of $Li_2CO_3$ and ZnBO for low temperature sintered $(Ba_{0.5},Sr_{0.5})TiO_3$ ceramics (BST 세라믹 저온소결에 $Li_2CO_3$와 ZnBO가 미치는 영향)

  • Kim, Se-Ho;You, Hee-Wook;Koo, Sang-Mo;Ha, Jae-Geun;Lee, Young-Hie;Koh, Jung-Hyuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.297-297
    • /
    • 2007
  • The $(B_{0.5},Sr_{0.5})TiO_3$ ceramics, which added with low sintering materials $Li_2CO_3$ and ZnBO, was investigated for LTCC(low temperature co-fired ceramic) applications. To compare sintering temperature of $(B_{0.5},Sr_{0.5})TiO_3$ respectively, we added 1, 2, 3, 4, and 5wt% of $Li_2CO_3$ and ZnBO to $(B_{0.5},Sr_{0.5})TiO_3$. For confirming the sintering temperature, the respective specimens were sintered from $750^{\circ}C$ to $1200^{\circ}C$ by $50^{\circ}C$. The case of $Li_2CO_3$ greatly lowered the sintering temperature of $(B_{0.5},Sr_{0.5})TiO_3$ ($1350^{\circ}C$) below $900^{\circ}C$. The addition of ZnBO improved the loss tangent of $(B_{0.5},Sr_{0.5})TiO_3$. The crystalline structure of $LiCO_3$ doped $(B_{0.5},Sr_{0.5})TiO_3$ and ZnBO doped $(B_{0.5},Sr_{0.5})TiO_3$ was analyzed with the X-ray diffraction (XRD) analysis. The dielectric permittivity and loss tangent of $Li_2CO_3$ doped BST and ZnBO doped BST were measured with the HP 4284A precision. From the electrical characterization, we respectively obtained the dielectric permittivity 1361, loss tangent $6.94{\times}10^{-3}$ at $Li_2CO_3$ doped $(B_{0.5},Sr_{0.5})TiO_3$ (3wt%) and the dielectric constant 1180, loss tangent $3.70{\times}10^{-3}$ at ZnBO doped $(B_{0.5},Sr_{0.5})TiO_3$(5wt%).

  • PDF

Synthesis and Electrochemical Properties of Zn and Al added LiNi0.85Co0.15O2 Cathode Materials (Zn와 Al을 첨가한 LiNi0.85Co0.15O2 양극활물질의 제조 및 전기화학적 특성평가)

  • Kim, Su-Jin;Seo, Jin-Seong;Na, Byung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.42-48
    • /
    • 2021
  • Zn and Al added LiNi0.85Co0.15O2 cathode materials were synthesized to improve electrochemical properties and thermal stability using a solid-state route. Crystal structure, particle size and surface shape of the synthesized cathode materials was measured using XRD (X-ray diffraction) and SEM (scanning electron microscopy). CV (cyclic voltammetry), first charge-discharge profiles, rate capability, and cycle life were measured using battery cycler (Maccor, series 4000). Strong binding energy of Al-O bond enhanced structure stability of cathode material. Electrochemical properties were improved by preventing cation mixing between Li+ and Ni2+. Large ion radius of Zn+ increased lattice parameter of NC cathode material, which meant unit-cell volume was expanded. NCZA25 showed 80% of capacity retention at 0.5 C-rate during 100 cycles, which was 12% higher than that of NC cathode. The discharge capacity of NCZA25 showed 104 mAh/g at 5 C-rate. NCZA25 achieved 36 mAh/g more capacity than that of NC cathod. NCZA25 cathode material showed excellent rate capability and cycling performance.

A study on the periodical domain obtained in Nd : $LiNbO_3$ sinlgle crystals grown by czochralski method (Czochralski법에 의해 성장시킨 Nd : $LiNbO_3$ 단결정의 주기적인 domain제어에 관한 연구)

  • 최종건
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.1
    • /
    • pp.50-55
    • /
    • 2002
  • $Nd_2O_3$0.2~0.5 wt.% doped $LiNbO_3$single crystals were grown by the Czochralski method. The ZnO doping by 2~8 mole% can improve the resistance of optical damage. In this study, Nd : LiNbO$_3$ single crystals with the periodical domain structure were obtained by CZ method.

Direct Sealing Glass-Ceramics to Metal (직접 결합방법에 의한 Glass-Ceramics과 금속의 접합)

  • Kim, Hwan;Lee, Ki-Kang
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.2
    • /
    • pp.99-104
    • /
    • 1981
  • Glass-ceramics possessed a number of characteristics which suggested their suggested their use for sealing to metals. The choice of particular glass-ceramics compositions for this application is governed by various factors, including workability of the glasses, thermal expansion characteristics and the matching of these to appropriate metals. Other properties, such as mechanical strength, determined the performance of glass-ceramics to metal seals. The purpose of the present study was to investigate direct sealing behaviour of copper to $Li_2O-ZnO-SiO_2$ system glass-ceramics. The design of the seal was a concentric seal which might contribute to the strong bond formation by providing compressive stress during thermal excursions. Tensile strengths of sealing layers were measured by Instron test machine. The layers were examined by electron probe microanalyzer. Crsystallization rate was increased with the amount of ZnO or $Li_2O$, and ZnO increased the sealing strength, but $Li_2O$ lowered it. Sealing mechanism was due to the formation of metal oxides, which acted as binder between copper and glass-ceramics. The nickle-plated copper seal with 10% $Li_2O$ and 30% ZnO was the most strong seal, and its sealing strength was more than 56kg/$\textrm{cm}^2$.

  • PDF

A study on the enhancement of refractive index in Ti:LiTaO$_{3}$ optical waveguides by Zn-vapor diffusion (Zn-Vapor확산에 의한 Ti:LiTaO$_{3}$ 광도파로의 굴절률 증가에 관한 연구)

  • 정홍식;정영식
    • Electrical & Electronic Materials
    • /
    • v.9 no.3
    • /
    • pp.298-303
    • /
    • 1996
  • A double diffusion technique is developed to enhance the effective mode index of optical waveguides in $LiTaO_3$. It consists of Zn diffusion from the vapor phase at relatively low temperatures (750->$800^{\circ}C$), into waveguides initially produced by Ti indiffusion at higher temperature (1150->$1200^{\circ}C$). Both X- and Z-cut substrates are investigated. A model that combines profiles of both diffusion is formulated to calculate the expected effective index values for planar waveguides. Good agreement is found between experimental results and model predictions which assume that the initial Ti profile is not affected by the lower temperature Zn diffusion. Effective index enhancements as high as 0.005 and 0.003 are obtained by this method for the fundamental extraordinary and ordinary modes, respectively.

  • PDF