BST 세라믹 저온소결에 Li₂CO₃와 ZnBO가 미치는 영향

김세호, 유희욱, 구상모, 하재근, 이영희, 고중력 광운대학교

Effective of Li₂CO₃ and ZnBO for low temperature sintered (Ba_{0.5},Sr_{0.5})TiO₃ ceramics

Se-Ho Kim, Hee-Wook You, Sang-Mo Koo, Jae-Geun Ha, Young-hie Lee, Jung-Hyuk Koh Kwangwoon University.

Abstract: The (Ba_{0.5},Sr_{0.5})TiO₃ ceramics, which added with low sintering materials Li₂CO₃ and ZnBO, was investigated for LTCC(low temperature co-fired ceramic) applications. To compare sintering temperature of (Ba_{0.5},Sr_{0.5})TiO₃ respectively, we added 1, 2, 3, 4, and 5wt% of Li₂CO₃ and ZnBO to (Ba_{0.5},Sr_{0.5})TiO₃. For confirming the sintering temperature, the respective specimens were sintered from 750 ℃ to 1200 ℃ by 50 ℃ The case of Li₂CO₃ greatly lowered the sintering temperature of (Ba_{0.5},Sr_{0.5})TiO₃ (1350 ℃) below 900 ℃ The addition of ZnBO improved the loss tangent of (Ba_{0.5},Sr_{0.5})TiO₃. The crystalline structure of Li₂CO₃ doped (Ba_{0.5},Sr_{0.5})TiO₃ and ZnBO doped (Ba_{0.5},Sr_{0.5})TiO₃ was analyzed with the X-ray diffraction (XRD) analysis. The dielectric permittivity and loss tangent of Li₂CO₃ doped BST and ZnBO doped BST were measured with the HP 4284A precision. From the electrical characterization, we respectively obtained the dielectric permittivity 1361, loss tangent 6.94×10⁻³ at Li₂CO₃ doped (Ba_{0.5},Sr_{0.5})TiO₃ (3wt%) and the dielectric constant 1180, loss tangent 3.70×10⁻³ at ZnBO doped (Ba_{0.5},Sr_{0.5})TiO₃ (5wt%).