Browse > Article
http://dx.doi.org/10.9713/kcer.2021.59.1.42

Synthesis and Electrochemical Properties of Zn and Al added LiNi0.85Co0.15O2 Cathode Materials  

Kim, Su-Jin (Department of Chemical Engineering, Chungbuk National University)
Seo, Jin-Seong (Department of Chemical Engineering, Chungbuk National University)
Na, Byung-Ki (Department of Chemical Engineering, Chungbuk National University)
Publication Information
Korean Chemical Engineering Research / v.59, no.1, 2021 , pp. 42-48 More about this Journal
Abstract
Zn and Al added LiNi0.85Co0.15O2 cathode materials were synthesized to improve electrochemical properties and thermal stability using a solid-state route. Crystal structure, particle size and surface shape of the synthesized cathode materials was measured using XRD (X-ray diffraction) and SEM (scanning electron microscopy). CV (cyclic voltammetry), first charge-discharge profiles, rate capability, and cycle life were measured using battery cycler (Maccor, series 4000). Strong binding energy of Al-O bond enhanced structure stability of cathode material. Electrochemical properties were improved by preventing cation mixing between Li+ and Ni2+. Large ion radius of Zn+ increased lattice parameter of NC cathode material, which meant unit-cell volume was expanded. NCZA25 showed 80% of capacity retention at 0.5 C-rate during 100 cycles, which was 12% higher than that of NC cathode. The discharge capacity of NCZA25 showed 104 mAh/g at 5 C-rate. NCZA25 achieved 36 mAh/g more capacity than that of NC cathod. NCZA25 cathode material showed excellent rate capability and cycling performance.
Keywords
Lithium secondary batteries; Cathode materials; $LiNi_{0.85}Co_{0.15}O_2$; Zn doping; Al doping;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wang, Y., Zhao, D., Zhang, K., Li, Y., Xu, B., Liang, F., Y. Dai and Y. Yao, "Enhancing the Rate Performance of High-Capacity LiNi0.8Co0.15Al0.05O2 Cathode Materials by Using Ti4O7 as a Conductive Additive," J. Energy Storage, 28, 101182(2020).   DOI
2 Chung, Y. M., Ryu, S. H., Ju, J. H., Bak, Y. R., Hwang, M. J., Kim, K. W., Cho, K. K. and Ryu, K. S., "A Surfactant-based Method for Carbon Coating of LiNi0.8Co0.15Al0.05O2 Cathode in Li Ion Batteries," Bull. Korean Chem. Soc., 31(8), 2304-2308(2010).   DOI
3 He, H., Dong, J., Zhang, D. and Chang, C., "Effect of Nb Doping on the Behavior of NCA Cathode : Enhanced Electrochemical Performances from Improved Lattice Stability towards 4.5V Application," Ceram. Int., 46(15), 24564-24574(2020).   DOI
4 Han, C. J., Eom, W. S., Lee, S. M., Cho, W. I. and Jang, H., "Study of the Electrochemical Properties of Ga-doped LiNi0.8Co0.2O2 Synthesized by a Sol-Gel Method," J. Power Sources, 144, 214-219(2005).   DOI
5 Subramanian, V. and Fey, G. T., "Preparation and Characterization of LiNi0.7Co0.2Ti0.05M0.05O2 (M=Mg, Al and Zn) Systems as Cathode Materials for Lithium Batteries," Solid State Ionics, 148, 351-358(2002).   DOI
6 Chung, Y. M. and Ryu, K. S., "Surface Coating and Electrochemical Properties of LiNi0.8Co0.15Al0.05O2/Polyaniline Composites as an Electrode for Li-Ion Batteries," Bull. Korean Chem. Soc., 30(8), 1733-1737(2009).   DOI
7 Yao, Z., Yin, H., Zhou, L., Pan, G., Wang, Y., Xia, X., Wu, J., Wang, X. and Tu, J., "Ti3+ Self-doped Li4Ti5O12 Anchored on N-doped Carbon Nanofiber Arrays for Ultrafast Lithium-Ion Storage," Small, 15(50), 1905296(2019).   DOI
8 Ko, H. S., Kim, J. H., Wang, J. and Lee, J. D., "Co/Ti Co-subtituted Layered LiNiO2 Prepared Using a Concentration Gradient Method as an Effective Cathode Material for Li-Ion Batteries," J. Power Sources, 372(31), 107-115(2017).   DOI
9 Chen, Y., Wang, G. X., Konstantinov, K., Liu, H. K. and Dou, S. X., "Synthesis and Characterization of LiCoxMnyNi1-x-yO2 as a Cathode Material for Secondary Lithium Batteries," J. Power Sources, 119-121, 184-188(2003).   DOI
10 Rougier, A., Saadoune, I., Gravereau, P., Willimann, P. and Delmas, C., "Effect of Cobalt Substitution on Cation Distribution in LiNi1-yCoyO2 Electrode Materials," Solid State Ionics, 90, 83-90 (1996).   DOI
11 Wan, D. Y., Fan, Z. Y., Dong, Y. X., Baasanjav, E., Jun, H. B., Jin, B., Jin, E. M. and Jeong, S. M., "Effect of Metal (Mn, Ti) Doping on NCA Cathode Materials for Lithium Ion Batteries," J. Nanomater., 2018, 8082502(2018).
12 Jiang, Y., Bi, Y., Liu, M., Peng, Z., Huai, L., Dong, P., Duan, J., Chen, Z., Li, X., Wang, D and Zhang, Y., "Improved stability of Nirich Cathode by the Substitutive Cations with Stronger Bonds," Electrochim. Acta, 268(1), 41-48(2018).   DOI
13 Montes, J. M., Cuevas, F. G., Ternero, F., Astacio, R., Cabellero, E. S. and Cintas, J., "A Method to Determine the Electrical Resistance of a Metallic Powder Mass under Compression," Metals, 7, 479(2017).   DOI
14 Zhong, Q. and Sacken, U., "Crystal Structures and Electrochemical Properties of LiAlyNil-yO2 Solid Solution," J. Power Sources, 54, 221-223(1995).   DOI
15 Huang, B., Li, X., Wang, Z., Guo, H. and Xiong, X., "Synthesis of Mg-doped LiNi0.8Co0.15Al0.05O2 Oxide and Its Electrochemical Behavior in High-Voltage Lithium-Ion Batteries," Ceram. Int., 40, 13223-13230(2014).   DOI
16 Jeong, M. H., Kim, H. C., Lee, W. T., Ahn, S. J., Lee, E. K. and Yoon, W. S., "Stabilizing Effects of Al-doping on Ni-rich LiNi0.8Co0.15Mn0.05O2 Cathode for Li Rechargeable Batteries," J. Power Sources, 474(31), 228592(2020).   DOI
17 Wu, L., Tang, X., Chen, X., Rong, Z., Dang, W., Wang, Y., Li, X., Huang, L. and Zhang, Y., "Improvement of Electrochemical Reversibility of the Ni-rich Cathode Material by Gallium Doping," J. Power Sources, 445(1), 227-337(2020).
18 Xiang, J., Chang, C., Zhang, F. and Sun, J., "Effects of Mg Doping on the Electrochemical Properties of LiNi0.8Co0.2O2 Cathode Material," J. Alloys Compd., 475, 483-487(2009).   DOI
19 Ryu, H. H., Park, N. Y., Seo, J. H., Yu, Y. S., Sharma, M., Mucke, R., Kaghazchi, P., Yoon, C. S. and Sun, Y. K., "A Highly Stabilizaed Ni-rich NCA Cathode for High Energy Lithium-Ion Batteries," Mater. Today, 36, 73-82(2020).   DOI
20 Ju, J. H., Chung, Y. M., Bak, Y. R., Hwang, M. J. and Ryu, K. S., "The Effects of Carbon Nano-Coating on Li(Ni0.8Co0.15Al0.05)O2 Cathode Material Using Organic Carbon for Li-Ion Battery," Surf. Rev. Lett., 17(1), 51-58(2010).   DOI
21 Park, K. J., Ham, D. J., Park, S. Y., Jang, J. H., Yeon, D. H., Moon, S. and Ahn, S. J., "High-Ni Cathode Material Improved with Zr for Stable Cycling of Li-Ion Rechargeable Batteries," RSC Adv., 10, 26756-26764(2020).   DOI
22 Cho, W. S., Lim, Y. J., Lee, S. M., Kim, J. H., Song, J. H., Yu, J. S., Kim, Y. J. and Park, M. S., "Facile Mn Surface Doping of Ni-rich Layered Cathode Materials for Lithium Ion Batteries," ACS Appl. Mater. Inter., 10, 38915-38921(2018).   DOI
23 Yoon, S., Jung, K. N., Yeon, S. H., Jin, C. S. and Shin, K. H., "Electrochemical Properties of LiNi0.8Co0.15Al0.05O2-graphene Composite as Cathode Materials for Lithium-Ion Batteries," J. Electroanal. Chem., 683, 88-93(2012).   DOI
24 Kondo, H., Takeuchi, Y., Sasaki T., Kawauchi, S., Itou, Y., Hiruta, O., Okuda, C., Yonemura, M., Kamiyama, T. and Ukyo, Y., "Effects of Mg-substitution in Li(Ni,Co,Al)O2 Positive Electrode Materials on The Crystal Structure and Battery Performance," J. Power Sources, 174, 1131-1136(2007).   DOI