• Title/Summary/Keyword: Lever arm effect

Search Result 11, Processing Time 0.026 seconds

Optimal In-Plane Configuration of 3-axis MEMS IMUs Considering Fault Detection and Isolation Performance and Lever Arm Effect (레버암 효과와 고장 감지 및 배제 성능을 고려한 여분의 3축 MEMS IMU의 평면 배치 기법)

  • Kim, Eung Ju;Kim, Yong Hun;Choi, Min Jun;Song, Jin Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1648-1656
    • /
    • 2018
  • The configuration of redundant inertial sensors are very important when considering navigation performance and fault detection and isolation (FDI) performance. By constructing a redundant sensor system using multiple inertial sensors, it is possible to improve the navigation performance and fault detection and isolation performance, which are highly related to the sensor configuration and allocation. In order to deploy multiple MEMS inertial measurement units effectively, a configuration and allocation methods considering navigation performance, fault detection and isolation performance, and lever arm effect in one plane are presented, and the performance is analyzed through simulation in this research. From the results, it is confirmed that the proposed configuration and allocation method can improve navigation, FDI, and lever arm effect rejection performances more effectively by more than 70%.

INS/GNSS/NHC Integrated Navigation System Compensating for Lever Arm Effect between NHC Effective Point and IMU Mounting Location

  • Chae, Myeong Seok;Kwon, Jae Uk;Cho, Eui Yeon;Cho, Seong Yun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.3
    • /
    • pp.199-208
    • /
    • 2022
  • Inertial Navigation System (INS)/Global Navigation Satellite System (GNSS) integrated navigation system can be used for land vehicle navigation. When the GNSS signal is blocked in a dense urban area or tunnel, however, the problem of increasing the error over time is unavoidable because navigation must be performed only with the INS. In this paper, Non-Holonomic Constraints (NHC) information is utilized to solve this problem. The NHC may correct some of the errors of the INS. However, it should be noted that NHC information is not applicable to all areas within the vehicle. In other words, the lever arm effect occurs according to the distance between the Inertial Measurement Unit (IMU) mounting position and the NHC effective point, which causes the NHC condition not to be satisfied at the IMU mounting position. In this paper, an INS/GNSS/NHC integrated navigation filter is designed, and this filter has a function to compensate for the lever arm effect. Therefore, NHC information can be safely used regardless of the vehicle's driving environment. The performance of the proposed technology is verified through Monte-Carlo simulation, and the performance is confirmed through experimental test.

Observability Analysis of a Lever Arm Error for Velocity Matching in Transfer Alignment (전달정렬의 속도정합에 대한 지렛대 거리 오차의 가관측성 분석)

  • Yang, Cheol-Kwan;Shim, Duk-Sun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.276-284
    • /
    • 2013
  • This paper considers the transfer alignment in the inertial navigation system and the observability analysis is performed for velocity matching. The state variable of the Kalman filter is modeled including the lever arm error and the measurement equation is obtained. The SOM(Stripped Observability Matrix) method is used for the observability analysis for various maneuvering conditions of the vehicle, which gives the full state observability condition as a specific maneuver sequence of the vehicle. While the observability analysis of a lever arm effect in the existing papers is mainly performed by simulations, we performed it analytically by the observability analysis method. The analysis result is verified using the computer simulations.

Lever Arm Compensation for GPS/INS/Odometer Integrated System

  • Seo Jae-Won;Lee Hyung-Keun;Lee Jang-Gyu;Park Chan-Gook
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.247-254
    • /
    • 2006
  • For more accurate navigation, lever arm compensation is considered. The compensation method for GPS and an odometer is introduced and new compensation methods are proposed for an odometer to consider the effect of coordinate transformation errors and the scale factor error. The methods are applied to a GPS/INS/odometer integrated system and the simulation and experimental results show its effectiveness.

$H_{\infty}$ filter for flexure deformation and lever arm effect compensation in M/S INS integration

  • Liu, Xixiang;Xu, Xiaosu;Wang, Lihui;Li, Yinyin;Liu, Yiting
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.3
    • /
    • pp.626-637
    • /
    • 2014
  • On ship, especially on large ship, the flexure deformation between Master (M)/Slave (S) Inertial Navigation System (INS) is a key factor which determines the accuracy of the integrated system of M/S INS. In engineering this flexure deformation will be increased with the added ship size. In the M/S INS integrated system, the attitude error between MINS and SINS cannot really reflect the misalignment angle change of SINS due to the flexure deformation. At the same time, the flexure deformation will bring the change of the lever arm size, which further induces the uncertainty of lever arm velocity, resulting in the velocity matching error. To solve this problem, a $H_{\infty}$ algorithm is proposed, in which the attitude and velocity matching error caused by deformation is considered as measurement noise with limited energy, and measurement noise will be restrained by the robustness of $H_{\infty}$ filter. Based on the classical "attitude plus velocity" matching method, the progress of M/S INS information fusion is simulated and compared by using three kinds of schemes, which are known and unknown flexure deformation with standard Kalman filter, and unknown flexure deformation with $H_{\infty}$ filter, respectively. Simulation results indicate that $H_{\infty}$ filter can effectively improve the accuracy of information fusion when flexure deformation is unknown but non-ignorable.

Comparison of inclination and vertical changes between single-wire and double-wire retraction techniques in lingual orthodontics

  • Hung, Bui Quang;Hong, Mihee;Yu, Wonjae;Kyung, Hee-Moon
    • The korean journal of orthodontics
    • /
    • v.50 no.1
    • /
    • pp.26-32
    • /
    • 2020
  • Objective: The Heat Induction Typodont System (HITS), used in some recent studies, has a distinct advantage over previous tooth movement simulation methods. This study aimed to compare inclination and vertical changes between the single-wire and double-wire techniques during en masse retraction with different lengths of lever arms in lingual orthodontics using an upgraded version of the HITS. Methods: Duet lingual brackets, which have two main slots, were used in this study. Forty samples were divided into four groups according to the length of the lever arm (3-mm or 6-mm hook) and the retraction wire (single-wire or double-wire). Four millimeters of en masse retraction was performed using lingual appliances. Thereafter, 3-dimensional-scanned images of the typodont were analyzed to measure inclination and vertical changes of the anterior teeth. Results: Incisor inclination presented more changes in the single-wire groups than in the double-wire groups. However, canine inclination did not differ between these groups. Regarding vertical changes, only the lateral incisors in the single-wire groups presented significantly larger values than did those in the double-wire groups. Combining the effect of hook lengths, among the four groups, the single-wire group with the 3-mm hook had the highest value, while the double-wire group with the 6-mm hook showed the least decrease in crown inclination and extrusion. Conclusions: The double-wire technique with an extended lever arm provided advantages over the single-wire technique with the same lever arm length in preventing torque loss and extrusion of the anterior teeth during en masse retraction in lingual orthodontics.

Shear Compatibility Condition with Arch Action in Simply Supported RC Beam (단순지지된 RC보에서의 아치효과를 고려한 전단변형적합조건)

  • Lee, Seong-Chul;Cho, Jae-Yeol;Kim, Woo;Park, Byung-Sun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.847-850
    • /
    • 2008
  • In simply supported concrete beams with concentrated load, there is arch action that the internal lever arm length varies through shear span. Recently shear analysis model considering this effect has been developed, but the analysis algorithm is so complicated. Moreover, the variation of internal lever arm length is not considered on the shear compatibility condition. In this study, the shear analysis model is developed more simply and the variation of internal lever arm length is considered on the shear compatibility condition. From these modifications, an actual shear behavior of RC beams subjected to concentrated load could be expected from the results of the proposed analysis model.

  • PDF

Arch Action in Simply Supported RC Beams Applied by Distributed Loads (분포하중을 받는 단순지지된 RC보에서의 아치효과)

  • Lee, Seong-Cheol;Park, Byung-Sun;Cho, Jae-Yeol;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.181-184
    • /
    • 2008
  • In the case of RC beams simply supported, there is arch action that the length of internal lever arm varies through span. Recently the shear analysis model which considers this arch action has been developed, but this analysis model is only applicable to RC beams subjected to concentrated load. In this study, therefore, the fundamental relationship between internal lever arm length and applied moment is developed with considering general load such as uniformly distributed load. The shear compatibility condition is also derived, which is also applicable to RC beams subjected to uniformly distributed load. From the analysis results of RC beams, the variation of shear strains through span could be expected by the proposed analysis model. The magnitude of shear strains expected from analysis is so relatively small that the effect of shear force due to arch action should be considered on analysis.

  • PDF

Design of the kalman filter for transfer alignment of strapdown inertial navigation system (스트랩다운 관성항법장치의 초기정렬 전달 칼만필터 설계)

  • Chung, Tae-Ho;Song, ki-Won;Jeon, Chang-Bae;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.142-146
    • /
    • 1991
  • In order to develope transfer alignment algorithm which achieves accurate initial alignment of slave strapdown inertial navigation system(SDINS) of a missle using master SDINS of mobile launchers third-order suboptimal filter is constructed to estimate the transformation matrix between two SDINS coordinates. In Kalman Filter formulation, the measurement equation uses that of accelerometer when stationary, and is replaced by that of gyroscope when elevating the missle. This switching method is applied to increase the degree of observability and to remove the error generated by lever arm effect. Simulation results show that the azimuth transfer error is about 0.3 mrad, and confirm that this scheme has a potential for real application.

  • PDF