• Title/Summary/Keyword: Levenberg-Marquardt

Search Result 160, Processing Time 0.034 seconds

The Comparison of Sphere Fitting Methods for Estimating the Center of Rotation on a Human Joint (인체관절의 회전중심 추정을 위한 구적합법의 비교)

  • Kim, Jin-Uk
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.1
    • /
    • pp.53-62
    • /
    • 2013
  • The methods of fitting a circle to measured data, geometric fit and algebraic fit, have been studied profoundly in various areas of science. However, they have not been applied exactly to a biomechanics discipline for locating the center of rotation of a human joint. The purpose of this study was to generalize the methods to fitting spheres to the points in 3-dimension, and to estimate the center of rotation of a hip joint by three of geometric fit methods(Levenberg-Marquardt, Landau, and Sp$\ddot{a}$th) and four of algebraic fit methods(Delogne-K${\aa}$sa, Pratt, Taubin, and Hyper). 1000 times of simulation experiments for flexion/extension and ad/abduction at an artificial hip joint with four levels of range of motion(10, 15, 30, and $60^{\circ}$) and three levels of angular velocity(30, 60, and $90^{\circ}$/s) were executed to analyze the responses of the estimated center of rotation. The results showed that the Sp$\ddot{a}$th estimate was very sensitive to the marker near the center of rotation. The bias of Delogne-K${\aa}$sa estimate existed in an even larger range of motion. The Levenberg-Marquardt algorithm of geometric fit and the Pratt of algebraic fit showed the best results. The combination of two methods, using the Pratt's estimate as initial values of the Levenberg-Marquardt algorithm, could be a candidate of more valid estimator.

Optimal Design of Friction Dampers based on the Story Shear Force Distribution of a Building Structure (경주지역에서 발생한 3개 지진의 지진원 및 지진파전파 매질특성에 관한 연구)

  • Jung, Je-Won;Kim, Jun-Kyoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.1 s.47
    • /
    • pp.33-39
    • /
    • 2006
  • Parameters including the seismic sources and the elastic wave propagation characteristics were analysed using the observed ground motions from 3 Kyoungju region earthquakes. The Levenberg-Marquardt algorithm was applied to invert all the variables non-linearly and simultaneously with S wave energy In frequency domain. Average stress drop of 3 events and local attenuation parameter ${\kappa}$ were estimated to about 48-bar and 0.0312 respectively. Regional attenuation parameter, Qo and ${\eta}$, were also estimated to be about 417 and 0.83. ${\kappa}$ values are much higher than that of EUS, even though smaller than that of WUS. All these values resultant from this study show that there are differences in some parameters of other studios due to differences in the governing equation. of acceleration motions

Estimation of Camera Motion Parameter using Invariant Feature Models (불변 특징모델을 이용한 카메라 동작인수 측정)

  • Cha, Jeong-Hee;Lee, Keun-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.4 s.36
    • /
    • pp.191-201
    • /
    • 2005
  • In this paper, we propose a method to calculate camera motion parameter, which is based on efficient invariant features irrelevant to the camera veiwpoint. As feature information in previous research is variant to camera viewpoint. information content is increased, therefore, extraction of accurate features is difficult. LM(Levenberg-Marquardt) method for camera extrinsic parameter converges on the goat value exactly, but it has also drawback to take long time because of minimization process by small step size. Therefore, in this paper, we propose the extracting method of invariant features to camera viewpoint and two-stage calculation method of camera motion parameter which enhances accuracy and convergent degree by using camera motion parameter by 2D homography to the initial value of LM method. The proposed method are composed of features extraction stage, matching stage and calculation stage of motion parameter. In the experiments, we compare and analyse the proposed method with existing methods by using various indoor images to demonstrate the superiority of the proposed algorithm.

  • PDF

A New Dynamic Prediction Algorithm for Highway Traffic Rate (고속도로 통행량 예측을 위한 새로운 동적 알고리즘)

  • Lee, Gwangyeon;Park, Kisoeb
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.3
    • /
    • pp.41-48
    • /
    • 2020
  • In this paper, a dynamic prediction algorithm using the cumulative distribution function for traffic volume is presented as a new method for predicting highway traffic rate more accurately, where an approximation function of the cumulative distribution function is obtained through numerical methods such as natural cubic spline interpolation and Levenberg-Marquardt method. This algorithm is a new structure of random number generation algorithm using the cumulative distribution function used in financial mathematics to be suitable for predicting traffic flow. It can be confirmed that if the highway traffic rate is simulated with this algorithm, the result is very similar to the actual traffic volume. Therefore, this algorithm is a new one that can be used in a variety of areas that require traffic forecasting as well as highways.

Battery State-of-Charge Estimation Using ANN and ANFIS for Photovoltaic System

  • Cho, Tae-Hyun;Hwang, Hye-Rin;Lee, Jong-Hyun;Lee, In-Soo
    • The Journal of Korean Institute of Information Technology
    • /
    • v.18 no.5
    • /
    • pp.55-64
    • /
    • 2020
  • Estimating the state of charge (SOC) of a battery is essential for increasing the stability and reliability of a photovoltaic system. In this study, battery SOC estimation methods were proposed using artificial neural networks (ANNs) with gradient descent (GD), Levenberg-Marquardt (LM), and scaled conjugate gradient (SCG), and an adaptive neuro-fuzzy inference system (ANFIS). The charge start voltage and the integrated charge current were used as input data and the SOC was used as output data. Four models (ANN-GD, ANN-LM, ANN-SCG, and ANFIS) were implemented for battery SOC estimation and compared using MATLAB. The experimental results revealed that battery SOC estimation using the ANFIS model had both the highest accuracy and highest convergence speed.

Impedance Imaging of Binary-Mixture Systems with Regularized Newton-Raphson Method

  • Kim, Min-Chan;Kim, Sin;Kim, Kyung-Youn
    • Journal of Energy Engineering
    • /
    • v.10 no.3
    • /
    • pp.183-187
    • /
    • 2001
  • Impedance imaging for binary mixture is a kind of nonlinear inverse problem, which is usually solved iteratively by the Newton-Raphson method. Then, the ill-posedness of Hessian matrix often requires the use of a regularization method to stabilize the solution. In this study, the Levenberg-Marquredt regularization method is introduced for the binary-mixture system with various resistivity contrasts (1:2∼1:1000). Several mixture distribution are tested and the results show that the Newton-Raphson iteration combined with the Levenberg-Marquardt regularization can reconstruct reasonably good images.

  • PDF

신경망기법을 이용한 위성영상(ETM+)에서 산불피해지역 추출

  • 임정호;원강연;사공호상
    • Proceedings of the KSRS Conference
    • /
    • 2001.03a
    • /
    • pp.70-70
    • /
    • 2001
  • 인공위성영상(ETM+)을 이용하여 산불피해지역을 추출하기 위해 신경망기법을 응용하였다. 적용된 신경망은 3개의 층으로 구성된 전향신경망이며 Levenberg-Marquardt 역전파 훈련 알고리즘을 사용하였다. 산불피해지역은 심, 중, 경 세 가지로 나누었으며, 그외 피해없는 산림지역과 기타(나지, 도시 등)지역으로 분류하였다.

  • PDF

Implementation of Gummel-Poon model parameter Extraction Program for a bipolar transistor (바이폴라 트랜지스터의 Gummel Poon 등가회로 파라미터 추출 프로그램의 구현)

  • 조재한;김명진;최인규;박종식
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.47-50
    • /
    • 2000
  • DC Gummel-Poon SPICE model parameter extraction program has been implemented. This program extracts the parameters from measured data using Levenberg-Marquardt algorithm. Measured data consist of forward and reverse Gummel plot, forward and reverse output characteristics and RE and RC measurements.

  • PDF

A New Approach to Short-term Price Forecast Strategy with an Artificial Neural Network Approach: Application to the Nord Pool

  • Kim, Mun-Kyeom
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1480-1491
    • /
    • 2015
  • In new deregulated electricity market, short-term price forecasting is key information for all market players. A better forecast of market-clearing price (MCP) helps market participants to strategically set up their bidding strategies for energy markets in the short-term. This paper presents a new prediction strategy to improve the need for more accurate short-term price forecasting tool at spot market using an artificial neural networks (ANNs). To build the forecasting ANN model, a three-layered feedforward neural network trained by the improved Levenberg-marquardt (LM) algorithm is used to forecast the locational marginal prices (LMPs). To accurately predict LMPs, actual power generation and load are considered as the input sets, and then the difference is used to predict price differences in the spot market. The proposed ANN model generalizes the relationship between the LMP in each area and the unconstrained MCP during the same period of time. The LMP calculation is iterated so that the capacity between the areas is maximized and the mechanism itself helps to relieve grid congestion. The addition of flow between the areas gives the LMPs a new equilibrium point, which is balanced when taking the transfer capacity into account, LMP forecasting is then possible. The proposed forecasting strategy is tested on the spot market of the Nord Pool. The validity, the efficiency, and effectiveness of the proposed approach are shown by comparing with time-series models

Modeling and assessment of VWNN for signal processing of structural systems

  • Lin, Jeng-Wen;Wu, Tzung-Han
    • Structural Engineering and Mechanics
    • /
    • v.45 no.1
    • /
    • pp.53-67
    • /
    • 2013
  • This study aimed to develop a model to accurately predict the acceleration of structural systems during an earthquake. The acceleration and applied force of a structure were measured at current time step and the velocity and displacement were estimated through linear integration. These data were used as input to predict the structural acceleration at next time step. The computation tool used was the Volterra/Wiener neural network (VWNN) which contained the mathematical model to predict the acceleration. For alleviating problems of relatively large-dimensional and nonlinear systems, the VWNN model was utilized as the signal processing tool, including the Taylor series components in the input nodes of the neural network. The number of the intermediate layer nodes in the neural network model, containing the training and simulation stage, was evaluated and optimized. Discussions on the influences of the gradient descent with adaptive learning rate algorithm and the Levenberg-Marquardt algorithm, both for determining the network weights, on prediction errors were provided. During the simulation stage, different earthquake excitations were tested with the optimized settings acquired from the training stage to find out which of the algorithms would result in the smallest error, to determine a proper simulation model.