DOI QR코드

DOI QR Code

Battery State-of-Charge Estimation Using ANN and ANFIS for Photovoltaic System

  • Cho, Tae-Hyun (Heesung Electronics LTG, Manufacturing Technology Team) ;
  • Hwang, Hye-Rin (School of Electronics Engineering, Kyungpook National University) ;
  • Lee, Jong-Hyun (School of Electronics Engineering, Kyungpook National University) ;
  • Lee, In-Soo (School of Electronics Engineering, Kyungpook National University)
  • Received : 2020.01.30
  • Accepted : 2020.03.07
  • Published : 2020.05.31

Abstract

Estimating the state of charge (SOC) of a battery is essential for increasing the stability and reliability of a photovoltaic system. In this study, battery SOC estimation methods were proposed using artificial neural networks (ANNs) with gradient descent (GD), Levenberg-Marquardt (LM), and scaled conjugate gradient (SCG), and an adaptive neuro-fuzzy inference system (ANFIS). The charge start voltage and the integrated charge current were used as input data and the SOC was used as output data. Four models (ANN-GD, ANN-LM, ANN-SCG, and ANFIS) were implemented for battery SOC estimation and compared using MATLAB. The experimental results revealed that battery SOC estimation using the ANFIS model had both the highest accuracy and highest convergence speed.

태양광 시스템의 안정성과 신뢰성 향상을 위해서는 배터리의 잔존량 (State of Charge, SOC)을 정확하게 추정하여야 한다. 본 연구에서는 gradient descent, Levenberg-Marquardt 및 scaled conjugate gradient 학습방법을 사용한 인공 신경회로망 (Artificial Neural Networks, ANN)과 적응형 뉴로-퍼지 추론 시스템 (Adaptive Neuro-Fuzzy Inference System, ANFIS)을 사용한 SOC 추정방법을 제안한다. 입력으로는 충전 시작 전압 및 적류적산법을 통해 구한 충전 전류를 사용하여 추정된 SOC를 출력한다. 4개의 모델 (ANN-GD, ANN-LM, ANN-SCG, 및 ANFIS)을 사용하여 SOC 추정 방법을 구현하였고 실험을 통해 MATLAB을 사용하여 4개의 모델의 성능을 비교 분석하였다. 실험 결과로부터 ANFIS 모델을 사용한 배터리의 SOC 추정이 가장 정확도가 높았으며 빠른 속도로 수렴함을 확인하였다.

Keywords

References

  1. H. R. Hwang, B. S. Kim, J. H. Kim, R. Xu, and I. S. Lee, "Development of a fault diagnosis algorithm for Solar Panel", Proceedings of the International Conference on Communication and Electronic Information Engineering (CEIE 2016), Guangzhou, China, pp. 1463-1465, Oct. 2016.
  2. T. H. Cho, H. R. Hwang, J. H. Lee, and I. S. Lee, "Comparison of Intelligent Methods of SOC Estimation for Battery of Photovoltaic System", International Journal of Advanced Computer Science and Applications, Vol. 9, No. 9, pp. 49-56, Sep. 2018.
  3. J. H. Jung and J. H. Jung, "New State-of-Charge Polynomial using Hermite Interpolation", Journal of the Institute of Electronics Engineers of Korea, Vol. 48, No. 1, pp. 9-17, Jan. 2011.
  4. Y. Luo, Y. Kan, Y. Yin, L. Liu, H. Cui, and F. Wu, "Study on a High-Accuracy Real-Time Algorithm to Estimate SOC of Multiple Battery Cells Simultaneously", Journal of Control Science and Engineering, Vol. 2017, Article ID 5390149, pp. 1-11, Aug. 2017.
  5. M. Coleman, C. K. Lee, C. Zhu, and W. G. Hurley, "State-of-Charge Determination From EMF Voltage Estimation: Using Impedance, Terminal Voltage, and Current for Lead-Acid and Lithium-Ion Batteries", IEEE Transactions on Industrial Electronics, Vol. 54, No. 5, pp. 2550-2557, Oct. 2007. https://doi.org/10.1109/TIE.2007.899926
  6. K. S. Ng, C. S. Moo, Y. P. Chen, and Y. C. Hsieh, "Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries", Apply Energy, Vol. 86, No. 9, pp. 1506-1511, Sep. 2009. https://doi.org/10.1016/j.apenergy.2008.11.021
  7. M. S. H. Lipu, M. A. Hannan, A. Hussain, M. H. M. Saad, A. Ayob, and F. Blaabjerg, "State of Charge Estimation for Lithium-Ion Battery Using Recurrent NARX Neural Network Model Based Lighting Search Algorithm", IEEE Access, Vol. 6, pp. 28150-28161, May 2018. https://doi.org/10.1109/ACCESS.2018.2837156
  8. S. Jurgen, "Pattern classification, a unified view of statistical and neural approaches", John Wiley and Sons, New York, 1996.
  9. T. Kohonen, "Self-organizing maps", Springer, Berlin, 1997.
  10. L. Fausett, "Fundamental of neural netwroks", Prentice Hall, 1994.
  11. A. J. M. Timmermans and A. A. Hulzebosch, "Computer vision system for on-line sorting of pot plants using an artificila neural network classifier", Computer and Electronics in Agriculture, Vol. 15, No. 1, pp. 41-55, May 1996. https://doi.org/10.1016/0168-1699(95)00056-9
  12. K. Tonie and S. J. Subavathi, "Neighborhood based modified backpropagation algorithm using adaptive learning parameters for training feedforward neural networks", Neurocomputing, Vol. 72, No. 16-18, pp. 3915-3921, Oct. 2009. https://doi.org/10.1016/j.neucom.2009.04.010
  13. I. S. Lee and J. H. Cho, "Fault Diagnosis of Nonlinear Systems based on Decision Tree and a Neural Network", The Journal of Korean Institute of Information Technology, Vol. 10, No. 5, pp. 41-48,May 2012.
  14. M. Negnevitsky, "Artificial Intelligence", Addison Wesley, 1996.
  15. S. H. Park, S. J. Kim, K. J. Lim, and S. H. Kang, "Comparison of recognition rates between BP and ANFIS with FCM clustering method on off-line PD diagnosis of defect models of traction motor stator coil", Proceedings of 2005 International Symposium on Electrical Insulating Materials, 2005. (ISEIM 2005), Kitakyushu, Japan, Vol. 3 pp. 849-852, Jun. 2005.
  16. I. S. Lee, J. H. Jo, H. M. Seo, and Y. S. Nam, "A Study on a Fault Detection and Isolation Method of Nonlinear Systems using SVM and Neural Network", Journal of Institute of Control, Robotics and Systems, Vol. 18, No. 6, pp. 540-545, Jun. 2012. https://doi.org/10.5302/J.ICROS.2012.18.6.540
  17. Z. Min, L. Xiao, L. Cao and H. Yan, "Application of the Neural Network in Diagnosis of Breast Cancer Based on Levenberg-Marquardt Algorithm", International Conference on Security, Pattern Analysis, and Cybernetics (SPAC), Shenzhen, China, pp. 268-272, Dec. 2017.
  18. Arun. D. Kulkarni, "Fuzzy Neural Network Models for Classification", Applied Intelligence, Vol. 12, No. 3, pp. 207-215, May 2000. https://doi.org/10.1023/A:1008367007808
  19. M. F. Moller, "A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning", Neural Networks, Vol. 6, No. 4, pp. 525-533, Nov. 1993. https://doi.org/10.1016/S0893-6080(05)80056-5