• Title/Summary/Keyword: Lee Ga-hwan

Search Result 311, Processing Time 0.039 seconds

Application of Polystyrene/SiO2 Core-shell Nanospheres to Improve the Light Extraction of GaN LEDs

  • Yeon, Seung Hwan;Kim, Kiyong;Park, Jinsub
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.314.2-314.2
    • /
    • 2014
  • To improve the optical and electrical properties of commercialized GaN-based light-emitting diodes (LEDs), many methods are suggested. In recent years, great efforts have been made to improve the internal quantum efficiency and light extraction efficiency (LEE) and promising approaches are suggested using a patterned sapphire substrate (PSS), V-pit embedded LED structures, and silica nanostructures. In this study, we report on the enhancement of photoluminescence (PL) intensity in GaN-based LED structures by using the combination of SiO2 (silica) nanospheres and polystyrene/SiO2 core-shell nanospheres. The SiO2 nanospheres-coated LED structure shows the slightly increased PL intensity. Moreover the polystyrene/SiO2 core-shell nanospheres-coated structure shows the more increase of PL intensity comparing to that of only SiO2 spheres-coated structure and the conventional structure without coating of nanospheres. The Finite-difference time-domain (FDTD) simulation results show corresponding result with experimentally observed results. The mechanism of enhancement of PL intensity using the coating of polystyrene/SiO2 core-shell nanospheres on LED surface can be explained by the improvement in extraction efficiency by both increasing the probability of light escape by reducing Fresnel reflection and by multiple scattering within the core-shell nanospheres.

  • PDF

Using GA-FSMC for Precise Water Level Control of Double Tank (GA-FSMC를 이용한 이중탱크의 정밀한 수위 제어)

  • Park, Hyun-Chul;Park, Doo-Hwan;Song, Hong-Jun;Jo, Hyun-Woo;Lee, Joon-Tark
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2192-2195
    • /
    • 2002
  • Even though, tanks are used at the many industry plants, it is very difficult to control the tank level without any overflow and shortage; moreover, cause of its complication of dynamics and nonlinearity, it's impossible to realize the accurate control using the mathematical model which can be applied to the various operation modes. However, the sliding mode controller(SMC) is known as having the robust variable structures for the nonlinear control systems with the parametric perturbations and with the sudden disturbances. It's difficult to find SMC's parameters, and SMC is bring chattering which injures actuator and increases error. In this paper, Genetic Aloglism based Fuzzy Sliding Mode Controller(GA-FSMC) for the precise control of the coupled tank level was proposed. Genetic Algolism and Fuzzy logic are adapted to find SMC's parameters and reduce the chattering. The simulation result is shown that the tank level could be satisfactorily controlled with less overshoot and steady-state error by the proposed GA-FSMC.

  • PDF

Effect of annealing on the structural, electrical and optical characteristics of Ga-doped ZnO(GZO)films (Ga doped ZnO 박막의 열처리 조건에 따른 전기적 특성에 관한 연구)

  • Oh, Su-Young;Kim, Eung-Kwon;Lee, Tae-Yong;Kang, Hyun-Il;Kim, Dong-Hwan;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.261-262
    • /
    • 2007
  • In this study we present the effect of annealing temperatures on the structural, electrical and optical characteristics of Ga-doped ZnO(GZO) films. GZO target have been deposited on corning 7059 glass substrates by DC sputtering. GZO films were annealed at temperatures of 400, 500, $600^{\circ}C$ in air ambient for 20 min. Experimental resulted in as-grown film shows the resistivity of $6{\times}10^{-1}\;{\Omega}{\cdot}cm$ and transmittance under 85%, whereas the electrical and optical properties of film annealed at $500^{\circ}C$ are enhanced up to $1.9{\times}10^{-3}\;{\Omega}{\cdot}cm$ and 90%, respectively.

  • PDF

Recent Research Trend in Deformable Devices Composed of Ga-based Liquid Metal (갈륨 기반 액체 금속을 활용한 형태가변형 전자 소자의 최신 연구 동향: 소재 및 제조 공정)

  • Ye Seul Nam;Kangto Han;Ji Hwan Jung;Siyoung Lee;Geun Yeol Bae
    • Journal of Adhesion and Interface
    • /
    • v.24 no.2
    • /
    • pp.41-53
    • /
    • 2023
  • The deformable devices refer to the devices that can maintain their initial performance even when stretched or bent. Among the materials used as conductor in deformable devices, Ga-based liquid metal is one of the most promising materials because it can provide not only high conductivity and deformability but also low toxicity. In this paper, we introduce Ga-based liquid metals and then discuss the recent research trend in deformable devices composed of Ga-based liquid metal.

A Study on Electrical, Optical Properties of GZO Thin Film with Target Crystalline (GZO 타겟 결정성에 따른 박막의 전기적 광학적 특성)

  • Lee, Kyu-Ho;Kim, Kyung-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.2
    • /
    • pp.114-120
    • /
    • 2012
  • In this research, we prepared Ga doped zinc oxide(ZnO:Ga, GZO) targets each difference sintering temperature $700^{\circ}C$, $800^{\circ}C$, and doping rate 1 wt.%, 2 wt.%, 3 wt.%. The characteristics of thin film on glass substrates which deposited by facing target sputtering in pure Ar atmosphere are reported. Ga doped zinc oxide film is attracted material through low resistivity, high transmittance, etc. When prepared target powder's structure was investigated by scanning electron microscope, densification and coarsening by driving force was observed. For each ZnO:Ga films with a $Ga_2O_3$ content of 3 wt.% at input power of 45W, the lowest resistivity of $9.967{\times}10^{-4}{\Omega}{\cdot}cm$ ($700^{\circ}C$) and $9.846{\times}10^{-4}{\Omega}{\cdot}cm$ ($800^{\circ}C$) was obtained. the carrier concentration and mobility were $4.09{\times}10^{20}cm^{-3}$($700^{\circ}C$), $4.12{\times}10^{20}cm^{-3}$($800^{\circ}C$) and $15.31cm^2/V{\cdot}s(700^{\circ}C)$, $12.51cm^2/V{\cdot}s(800^{\circ}C)$, respectively. And except 1 wt.% Ga doped ZnO thin film, average transmittance of these samples in the range 350-800 nm was over 80%.

RIE에서 $C_3F_6$ 가스를 이용한 $Si_3N_4$ 식각공정 개발

  • Jeon, Seong-Chan;Gong, Dae-Yeong;Jeong, Dong-Geon;Choe, Ho-Yun;Kim, Bong-Hwan;Jo, Chan-Seop;Lee, Jong-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.328-329
    • /
    • 2012
  • $SF_6$ gas는 반도체 및 디스플레이 제조공정 중 Dry etch과정에서 널리 사용되는 gas로 자연적으로 존재하는 것이 아닌 사용 목적에 맞춰 인위적으로 제조된 gas이다. 디스플레이 산업에서 $SF_6$ gas가 사용되는 Dry etch 공정은 주로 ${\alpha}$-Si, $Si_3N_4$ 등 Si계열의 박막을 etch하는데 사용된다. 이러한 Si 계열의 박막을 식각하기 위해서는 fluorine, Chlorine 등이 사용된다. fluorine계열의 gas로는 $SF_6$ gas가 대표적이다. 하지만 $SF_6$ gas는 대표적인 온실가스로 지구 온난화의 주범으로 주목받고 있다. 세계적으로 온실가스의 규제에 대한 움직임이 활발하고, 대한민국은 2020년까지 온실가스 감축목표를 '배출전망치(BAU)대비 30% 감축으로' 발표하였다. 따라서 디스플레이 및 반도체 공정에는 GWP (Global warming Potential)에 적용 가능한 대체 가스의 연구가 필요한 상황이다. 온실가스인 $SF_6$를 대체하기 위한 방법으로 GWP가 낮은 $C_3F_6$가스를 이용하여 $Si_3N_4$를 Dry etching 방법인 RIE (Reactive Ion Etching)공정을 한 후 배출되는 가스를 측정하였다. 4인치 P-type 웨이퍼 위에 PECVD (Plasma Enhanced Chemical Vapor Deposition)장비를 이용하여 $Si_3N_4$를 200 nm 증착하였고, Photolithography공정을 통해 Patterning을 한 후 RIE공정을 수행하였다. RIE는 Power : 300 W, Flow rate : 30 sccm, Time : 15 min, Temperature : $15^{\circ}C$, Pressure : Open과 같은 조건으로 공정을 수행하였다. 그리고 SEM (Scanning Electron Microscope)장비를 이용하여 Etching된 단면을 관찰하여 단차를 확인하였다. 또한 Etching 전후 배출가스를 포집하여 GC-MS (Gas Chromatograph-Mass Spectrophotometry)를 측정 및 비교하였다. Etching 전의 경우에는 $N_2$, $O_2$ 등의 가스가 검출되었고, $C_3F_6$ 가스를 이용해 etching 한 후의 경우에는 $C_3F_6$ 계열의 가스가 검출되었다.

  • PDF

Protective Effect of DWP-04 Against Hepatotoxicity Induced by D-galactosamine (흰쥐에서 DWP-04가 D-galactosamine에 의해 유도된 간독성의 보호효과)

  • Lee Jung-Hee;Chi Sang Cheol;Kim Seok-Hwan;Shin Young-Ho;Choi Jongwon
    • Journal of Life Science
    • /
    • v.15 no.3 s.70
    • /
    • pp.461-467
    • /
    • 2005
  • This study was conducted to investigate the biological activity and hepatoprotective effect of DWP-04 [DDB : selenium yeast: glutathione (31.1 : 6.8 : 62.1(w/w/w)] in D-galactosamine (GaIN) intoxicated rats. The DWP-04 (50, 100 or 200 mg/kg) or its vehicle was orally administered everyday before the start of GaIN injection (400 mg/kg, ip) for two weeks and animal decapitated for 24 hrs after GaIN­injected. The activities of serum enzymes, markers of liver function, were increased in the GaIN group compared to normal group and significantly lowered in the DWP-04 pretreated group than in the GaIN group. Hepatic lipid peroxide level and activities of phase 1 enzymes were significantly higher than those of GaIN group compared to normal group and lower in the DWP-04 pretreated group than in the GaIN group, and phase II enzyme activities in liver were lower in the GaIN group than in the normal group and were increased in the DWP-04 pretreated group than in the GaIN group. Total hepatic glutathione content and glutathione biosynthesis enzymes were lower in the GaIN group than in the normal group and were increased in the DWP-04 pretreated group than in the GaIN group. Therefore, the current results indicated that DWP-04 administration alleviated the GaIN-induced adverse effect through enhancing the antioxidant enzyme activities.

Effects of Galvannealing Temperatures on Iron-Zn Intermetallic Compounds and Friction Characteristic of Galvannealed Coatings (갈바어닐링온도변화가 합금화용융아연코팅의 합금상과 마찰특성에 미치는 영향)

  • Lee, Jung-Min;Kim, Dong-Hwan;Lee, Seon-Bong;Kim, Dong-Jin;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.12
    • /
    • pp.1107-1114
    • /
    • 2008
  • This paper is aimed to understand the effect of different galvannealing temperatures on the frictional properties and Fe-Zn intermetallic phases of the galvannealed (GA) coatings on steel sheets. Their galvannealing treatments were conducted at 465, 505, 515 and $540^{\circ}C$ for about 10s in the additional heating furnace of an industrial continuous hot-dip galvanizing line. The mechanical and the frictional properties of the coatings were estimated using nanoindentation, nanoscratch, micro vickers hardness tests and flat friction tests, which were performed at contact pressures of 4, 20 and 80MPa. Also, the correlation between the microstructure and the frictional properties of the GA coatings were investigated by SEM observation for the cross-section of the GA coating after and before flat friction tests. The results showed that the mechanical and the frictional properties of the coatings are strongly dependent on their phase distributions and microstructure. Especially, in low contact pressure of 4MPa the frictional properties of the coatings were dependent on the surface phases and morphology, while in high contact pressure of 80MPa it was influenced by their mechanical properties based on the dominant phase distributions.

Nonlinear Identification of Electronic Brake Pedal Behavior Using Hybrid GMDH and Genetic Algorithm in Brake-By-Wire System

  • Bae, Junhyung;Lee, Seonghun;Shin, Dong-Hwan;Hong, Jaeseung;Lee, Jaeseong;Kim, Jong-Hae
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1292-1298
    • /
    • 2017
  • In this paper, we represent a nonlinear identification of electronic brake pedal behavior in the brake-by-wire (BBW) system based on hybrid group method of data handling (GMDH) and genetic algorithm (GA). A GMDH is a kind of multi-layer network with a structure that is determined through training and which can express nonlinear dynamics as a mathematical model. The GA is used in the GMDH, enabling each neuron to search for its optimal set of connections with the preceding layer. The results obtained with this hybrid approach were compared with different nonlinear system identification methods. The experimental results showed that the hybrid approach performs better than the other methods in terms of root mean square error (RMSE) and correlation coefficients. The hybrid GMDH/GA approach was effective for modeling and predicting the brake pedal system under random braking conditions.

Design of GA-Fuzzy Precompensator of TCSC-PSS for Enhancement of Power System Stability (전력계통 안정도 향상을 위한 TCSC 안정화 장치의 GA-퍼지 전 보상기 설계)

  • Chung Mun Kyu;Wang Yong Peel;Chung Hyeng Hwan;Lee Chang Woo;Lee Jeong Phil;Hur Dong Ryol
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.292-294
    • /
    • 2004
  • In this paper, we design the GA-fuzzy precompensator of a Power System Stabilizer for Thyristor Controlled Series Capacitor(TCSC-PSS) for enhancement of power system stability. Here a fuzzy precompensator is designed as a fuzzy logic-based precompensation approach for TCSC-PSS. This scheme is easily implemented simply by adding a fuzzy precompensator to an existing TCSC-PSS. And we optimize the fuzzy precompensator with a genetic algorithm for complements the demerit such as the difficulty of the component selection of fuzzy controller, namely, scaling factor, membership Auction and control rules. Simulation results show that the proposed control technique is superior to a conventional PSS in dynamic responses over the wide range of operating conditions and is convinced robustness and reliableness in view of structure.

  • PDF