Browse > Article
http://dx.doi.org/10.4313/JKEM.2012.25.2.114

A Study on Electrical, Optical Properties of GZO Thin Film with Target Crystalline  

Lee, Kyu-Ho (Department of Electrical Engineering, Gacheon University)
Kim, Kyung-Hwan (Department of Electrical Engineering, Gacheon University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.25, no.2, 2012 , pp. 114-120 More about this Journal
Abstract
In this research, we prepared Ga doped zinc oxide(ZnO:Ga, GZO) targets each difference sintering temperature $700^{\circ}C$, $800^{\circ}C$, and doping rate 1 wt.%, 2 wt.%, 3 wt.%. The characteristics of thin film on glass substrates which deposited by facing target sputtering in pure Ar atmosphere are reported. Ga doped zinc oxide film is attracted material through low resistivity, high transmittance, etc. When prepared target powder's structure was investigated by scanning electron microscope, densification and coarsening by driving force was observed. For each ZnO:Ga films with a $Ga_2O_3$ content of 3 wt.% at input power of 45W, the lowest resistivity of $9.967{\times}10^{-4}{\Omega}{\cdot}cm$ ($700^{\circ}C$) and $9.846{\times}10^{-4}{\Omega}{\cdot}cm$ ($800^{\circ}C$) was obtained. the carrier concentration and mobility were $4.09{\times}10^{20}cm^{-3}$($700^{\circ}C$), $4.12{\times}10^{20}cm^{-3}$($800^{\circ}C$) and $15.31cm^2/V{\cdot}s(700^{\circ}C)$, $12.51cm^2/V{\cdot}s(800^{\circ}C)$, respectively. And except 1 wt.% Ga doped ZnO thin film, average transmittance of these samples in the range 350-800 nm was over 80%.
Keywords
Ga doped zinc oxide; GZO; FTS; crystallinity; TCO;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. S. Moss, Proc. Phys. Soc. London, Sect., B67, 775 (1954).
2 J. Krc, M. Zeman, A. Campa, F. Smole and M. Topic, MRS Symp. Proc., 910, 0910-A25-01 (2006).   DOI
3 R. B. H. Tahar, T. Ban, Y. Ohya, and Y. Takahashi, J. Appl. Phys., 83, 2631 (1998).   DOI   ScienceOn
4 F. Cooray, K. Kushiya, A. Fujimaki, I. Sugiyama, T. Miura, D. Okumura, M. Sato, M. Ohshita, and O. Yamase, Sol. Energy Mater. Sol. Cells, 49, 291 (1997).   DOI   ScienceOn
5 G. L. Harding, B. Window, and E. C. Horrigan, Sol. Energy Mater., 22, 69 (1991).   DOI   ScienceOn
6 A. Suzuki, T. Matsushita, N. Wada, Y. Sakamoto, and M. Okuda, Jpn. J. Appl. Phys., 35, L56 (1996).   DOI   ScienceOn
7 B. M. Ataev, A. M. Bagamadova, A. M. Djabrailov, V. V. Mamedov, and R. A. Rabadanov, Thin Solid Films, 260, 19 (1995).   DOI   ScienceOn
8 V. Assuncao, E. Fortunato, A. Marques, H. Aguas, I. Ferreira, M. E. V. Costa, and R. Martins, Thin Solid Films, 427, 401 (2003).   DOI   ScienceOn
9 K. Yim, H. W. Kim, and C. Lee, J. Mater. Sci. Technol., 23, 108 (2007).   DOI   ScienceOn
10 N. Matsushita, K. Noma, S. Nakagawa, and M. Naoe, Int. Conference on Ferrites, 6, 428 (1992).
11 Housei Akazawa, Applied Physics Express, 2, 081601 (2009).   DOI
12 H. Lei, K. Ichikawa, M. H. Wang, Y. Hoshi, T. Uchida, and Y. Sawada, IEICE Transactions on Electronics, E91.C, 1658 (2010).   DOI