본 논문에서는 패널회귀모형에서 회귀계수 추정량으로 일반최소제곱추정량과 가중최소 제곱추정량의 설계기반 성질을 고찰한다. 회귀계수의 최소제곱추정량을 선형화하여 일반최소제곱추정량의 근사편향, 근사분산, 그리고 근사평균제곱오차의 수식과, 가중최소제곱추정량의 근사분산 수식을 유도한 후, 모의실험을 통하여 두 추정량의 근사분산 및 근사평균 제곱오차의 크기를 수치적으로 비교한다. 모의실험에서는 한국복지패널 3개년 데이터를 모집단으로 간주하고, 가구소득 변수를 관심변수로 하며 가구와 가구주 관련 7개 변수를 설명변수로 하는 유한모집단 회귀계수를 고려한다. 두 추정량의 설계기반 성질을 비교하기 위하여 표본수를 50에서 1,000까지 50 간격으로 설정하여 일반최소제곱추정량의 근사편향, 근사분산 그리고 가중최소제곱추정량의 근사분산을 계산한다. 모의실험을 통하여 다음과 같은 경향을 확인하였다. 첫째, 표본의 크기가 커지면 일반최소제곱추정량의 평균제곱오차가 가중최소제곱추정량의 분산보다 커진다. 둘째, 일반최소제곱추정량의 평균제곱오차를 가중최소제곱추정량의 분산으로 나눈비(ratio)는 설명변수에 따라 크기가 다르게 나타나고, 일반최소제곱추정량의 편향이 클수록 큰 값을 보인다. 셋째, 분산만 비교하면 일반최소제곱추정량의 분산이 가중최소제곱추정량의 분산보다 대부분의 경우에 더 작게 나타난다.
Several algorithms for bivariate time series modeling are reviewed : linear least square, nonlinear least squares, generalized least square, and multi-stage least square methods. Estimation results of simulated data by the above methods are discussed.
SEO, SEUNGPYO;LEE, CHANGSOO;KIM, EUNSA;YUNE, KYEOL;KIM, CHONGAM
Journal of the Korean Society for Industrial and Applied Mathematics
/
제24권1호
/
pp.1-22
/
2020
An accurate and efficient gradient estimation method on unstructured grid is presented by proposing a switching process between two Least-Square methods. Diverse test cases show that the gradient estimation by Least-Square methods exhibit better characteristics compared to Green-Gauss approach. Based on the investigation, switching between the two Least-Square methods, whose merit complements each other, is pursued. The condition number of the Least-Square matrix is adopted as the switching criterion, because it shows clear correlation with the gradient error, and it can be easily calculated from the geometric information of the grid. To illustrate switching process on general grid, condition number is analyzed using stencil vectors and trigonometric relations. Then, the threshold of switching criterion is established. Finally, the capability of Switching Weighted Least-Square method is demonstrated through various two- and three-dimensional applications.
The Journal of Asian Finance, Economics and Business
/
제5권1호
/
pp.11-16
/
2018
This research examines the alternative ways of estimating the coefficient of non-diversifiable risk, namely beta coefficient, in Capital Asset Pricing Model (CAPM) introduced by Sharpe (1964) that is an essential element of assessing the value of diverse assets. The non-parametric methods used in this research are the robust Least Trimmed Square (LTS) and Maximum likelihood type of M-estimator (MM-estimator). The Jackknife, the resampling technique, is also employed to validate the results. According to finance literature and common practices, these coecients have often been estimated using Ordinary Least Square (LS) regression method and monthly return data set. The empirical results of this research pointed out that the robust Least Trimmed Square (LTS) and Maximum likelihood type of M-estimator (MM-estimator) performed much better than Ordinary Least Square (LS) in terms of eciency for large-cap stocks trading actively in the United States markets. Interestingly, the empirical results also showed that daily return data would give more accurate estimation than monthly return data in both Ordinary Least Square (LS) and robust Least Trimmed Square (LTS) and Maximum likelihood type of M-estimator (MM-estimator) regressions.
This paper concerns a modified perturbation method and a least square approach to synthesize an optimum beam pattern of a thinned sensor array with respect to element spacing. In the modified perturbation, the antenna spacing is perturbed iteratively such that the sidelobes are equalized via a linear programming approach. The least square approach is proposed to improve the array performance for the thinned array using the fact that the number of sidelobes is more than the number of element spacings. It is demonstrated that the least square approach performs better than the modified perturbation method.
Communications for Statistical Applications and Methods
/
제19권1호
/
pp.23-32
/
2012
본 논문은 유한모집단에서 회귀계수추정량의 근사편향과 근사분산을 다루고 있다. 유한모집단에서 고정크기 포함확률비례표본을 추출하고 이 표본에서 조사된 데이터에 기초하여 회귀계수를 일반최소제곱추정량과 가중최소제곱추정량으로 추정할 때 두 추정량의 편향, 분산 그리고 평균제곱오차의 근사식을 유도하였다. 그리고 두 추정량의 효율을 비교하기 위하여 두 추정량의 분산을 비교하는 필요충분조건을 제시하였다. 또한 수치적인 비교를 위하여 간단한 예제를 소개하였다.
In general, the Least Square Error method is used for signal classification to measure distance in the $l^2$ metric or the $L^2$ metric space. A defect of the Least Square Error method is that it does not classify properly some waveforms, which is due to the property of the Least Square Error method: the global analysis. This paper proposes a new linear operator, the Integra-Normalizer, that removes the problem. The Integra-Normalizer possesses excellent property that measures the degree of relative similarity between signals by expanding the functional space with removing the restriction on the functional space inherited by the Least Square Error method. The Integra-Normalizer shows superiority to the Least Square Error method in measuring the relative similarity among one dimensional waveforms.
정확한 토크 체결력을 제공하기 위하여 토크 측정기는 최소자승이 적용된 커브피팅 알고리즘을 사용한다. 본 논문에서 제안하는 보정 최소자승 커브피팅 알고리즘은 토크 정밀 측정을 사용하는 다양한 산업분야에서 볼트와 너트에 향상된 체결력을 제공할 수 있다. 먼저, 제안한 알고리즘에 대한 수학적 모델을 소개하고, 제안한 알고리즘을 시뮬레이션하여 기존 알고리즘과 그 결과를 비교하였다. 보정된 최소자승 알고리즘은 기존의 토크 측정에 사용되었던 알고리즘보다 낮은 표준 오차 값을 보임으로써 제안한 보정된 최소자승 알고리즘의 성능의 정확성을 증명한다. 따라서, 본 알고리즘을 토크 계측에 적용함으로써 정밀 산업기계 및 전자부품 그리고 기타 항공기, 우주선등 나사의 조임 체결력이 적용되는 산업분야에 적용함으로써 비용 및 안전성 향상에 기여될 것을 예상한다.
Journal of the Korean Data and Information Science Society
/
제9권2호
/
pp.219-225
/
1998
The parameters in linear models with censored normal responses are usually estimated by the iterative maximum likelihood and least square methods. However, the iterative least square method is simple but hardly has theoretical justification, and the iterative maximum likelihood estimating equations are complicatedly derived. In this paper, we justify these methods via Wedderburn (1974)'s quasi-likelihood approach. This provides an explicit justification for the iterative least square method and also directly the iterative maximum likelihood method for estimating the regression coefficients.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.