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Performance Improvement of a Modified Perturbation Method via a Least

Square Approach for Sensor Arrays

*Byong Kun Chang

Abstract

This paper concemns a modified perturbation method and a least square approach to synthesize an optimum beam

pattern of a thinned sensor array with respect to element spacing. In the modified perturbation, the antenna spacing is

perturbed iteratively such that the sidelobes are equalized via a linear programming apptoach. The least square approach is

proposed to improve the amay performance for the thinned army using the fact that the number of sidelobes is more than

the number of element spacings.

It is demonstrated that the least square approach performs better than the modified perturbation tmethod.

1. Introduction

A linear sensor array is an array whose elements are
arranged on a straight line. If the elements are spaced
uniformly every half waselength, the array is called a
filled array. If the array consists of fewer number of
elements than the filled array with the same array length,
the amray is called a thinned array.

The thinned array is an efficient system which
prevents the degradation of amay performance due to
mutual coupling effects and also reduces the array cost
by employing less number of sensor elements compared
to a half-wavelength spaced filled array. The origin of
the concept for thinned arrays dates back to the work of
Unzfl] in the 1950's. Ever since then, the thinned array
has been widely investigated in such areas as radar(2, 3},
astronomy[4] and satellite commumnication[5]. It is known
that when the number of elements in a filled amay is
reduced, the sidelobe performance is degraded due to the
less of degrees of freedom to contro] the beam pattern.
The problem in the thinned amray is how to synthesize
an optimum pattern with reduced number of elements
which satisfies given design specifications while the
performance is comparable to that of the filled array. A
linear sensor array is shown in Fig.l.

In this paper, it is concerned that the thinned array is
designed such that the sidelobe level is cqualized in a
Dolph-Chebyshey sense to counteract the interferences
uniformly distributed over the armay visual range. A
certain set of optimum element spacings is found by an
iterative perturbation of element spacings with uniform
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array weights. A conventional perturbation method[6] is
modified such that an optimym pattem for the thinned
array is efficiently synthesized by locating the sidelobes

numericaily.

array output

Figure 1. Linear sensor array.

II. Perturbation Method

One way to find a certain set of element spacings
such that the sidelobe level of the thinned array factor is
equalized as in the pattem of Dolph-Chebyshev filled
array is to reduce the level of the higher sidelobes by
sacrificing lower sidelobes as in the perturbation method
proposed by M. T. Ma [6).

The petturbation method equalizes the sidelobe levels
iteratively using an arbitrary initial pattern by perturbing
the element spacings. To this end, either the element



38

spacing or the cument or both may be perturbed. From a
practical point of view, we consider the case of
perturbing the element spacing while maintaining the
uniform current.

The array factor of a symmetric thinned amay of 2N,

elements is given by

M
Hw)=2 2 a,co5(Dy) 0

where the current ¢, is assumed to be uniform.

Nomalizing the current, we get
L3
H(w)=—- 3 cos(wD,) @
1 #=1

Suppose that L sidelobes are located at
w; 1 £ i< L and the comesponding sidefobe levels

are H(w;) =¢e; Since the derivative of FH(w) with
respect to @ at each sidelobe w; will be zero, we have

the following equations

N,
e,-=-]&,'* z:: cos{wD,), 1 < i< L 3)
N,
Z‘,ID,sin(w.vD,,)=0, 1<i<L @

Note that for the linear equations in (3) and (4), the
solution for w; and D, will be unique only when the

L=N, ie, the number of sidelobes to be controiled is
the same as the number of the unknown eclement spacings.
In the perturbation method, the element spacing D, is
perturbed iteratively snch that N sidelobes get closer to a
specified threshold level. With an initial choice of
spacings D % the corresponding w ? and & ¢ of the
N, highest sidelobes are determined. If the initial

spacing is perturbed by 4D % we have
DL=D4+4DF§ )

As a result, the positions and the levels of these N,

sidefobes change accordingly as follows.
wl=wl+de’? (6)

ei=glt+de] Q)

The Joumnal of the Acoustical Sociely of Korea, Vol 18. No. 4E(1999)

Then, (3) and (4) become

N,

EEZ_AII," =lcos((a)',}-+da)f-')(DE‘,+de,)). l<i< L

(8)

§!(D2+AD?.)sin((w?+Aw % (D%+4D)
=0, 1<i<L (9

Assuming small perturbations, we use the following
approximations in (8) and (9)

sin{ D% +0%YD%+4D0 %0

=~ Do+ 0 %D (10}
cos{D 20w %+ 0D+ 4D %0 % ~ 1 (1)

Then we have

N,
de }=——1},Tw? ”glzm Osin( @ 'D Y a2)

N, . ¥,

408 (D D%0s(@ DY +08 D DD %cos(w DY)
H=| ¥ ]

+ gldoﬁsintwﬁ?ob =9

(13)

Assuming that Je; is a small fraction of the

difference of the actual sidclobe level of the ith sidelobe
and a specified threshold level, which is set as a desired
equalized sidclobe level, we perturb the spacings iteratively
using a linear programming approach until all the
sidelobes arc equalized. It is to be noted that to ensure
unique solutions of 4D, and Aw,; at each iteration, the

number of sidelobes L to be conirofled should be equal to
the number of element spacings N,. Also, the threshold
level needs to bc chosen very carefully such that it is a
median of all the sidelobe levels, Thus, the higher
sidelobes decrease by sacrificing the lower sidelobes. If
the threshold level is set too low, therc may be nao
solution to the linear equations of (I12) or the resulting
pattemn will be degraded.

Consider a symmetric 20-clement filled armmay with
initial element spacing uniform. The number of sidelobes
on one side of the mainbeamn is nine and the number of
unknown spacings is nine with the two end elements
fixed. The initial and synthesized beam pattemns are
shown in Fig. 2. The initial and final spacings are
shown of Table 1. It is shown that the levels of the first
three higher sidelobes are reduced by sacrificing the
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lower ones away from the mainbeam. The mainbeam
width becomes slightly broader. Also some of the
spacings between two neighboring elements are much
less than half wavelength. Thus mutal coupling effects
are significant for the case of antenna elements. Since
only N, sidelobes are controlled in the perturbation
method, if a pattem with more than N, sidelobes is
used as the initial pattern, some of the sidelobes can not
be controtled. For example, if a 20-clement symmetric
thinned amray with inter-clement spacing (.81 is used,
the initial patten has 20 sidelobes. Thus 11 sidelobes
will be out of control. The initial and final patterns are
compared in Fig. 3 and the comesponding spacings are
listed in Table 2. It is observed that only 9 sidelobes are
equalized while other sidelobes are not controlled.

snomalized powet {08)
8 4

Figure 2. Beam pattern of a 20-element symmetric atray:
equalized pattern (solid line); initial pattern (dotted
line).
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Figure 3. Comparison of the initial (dotted {line) and
equalized (solid line)} patterns of a 20-clement
symmetric thinned array.

Table 1. Initial and finai spacings of a 20-element symmetric
filled array by perurbation method.

nth element Initial spacing( A/2) | Final spacing( A /2)
t 0.5 0.40077
2 1.5 1.15678
3 25 2.03846
4 3.5 2.75360
5 45 3.75888
6 55 457215
7 6.5 5.70444
8 7.5 6.81071
9 8.5 8.35283

10 9.5 2.5

Table 2. Initial and final spacings of a 20-clement symmetric
thinned array by perturbation method.

nth element | Initial spacing( A/2) | Final spacing( A /2)
1 0.8 0.79395
2 24 2.17265
3 4.0 3.52181
4 56 4.52668
5 72 6.16170
6 8.8 7.77555
7 104 9.43360
8 12.0 10.90503
9 13.6 13.33368

10 21.85 21.85

From the above discussions, some drawbacks of the
perturbation method have been observed.

1. Since the array should initially be equally spaced
with (.51 spacing to produce a pattem with the
same number of sidelobes as the number of
element spacings, some of the final spacings are
less than half wavelength. As a result, the mutual
coupling effects increase for the case of antenna

arrays.

2. If the number of the sidelobes in the initial pattem
is more than the number of element spacings, some
of the sidelobes may not be controlled.

Therefore, the perturbation method is not suitable for
the thinned array where the number of sidelobes is more
than the number of element spacings to be determined.
To overcome the shortcomings of the perturbation
method, a modified perturbation method is proposed.
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II1. Modified Perturbation Method

In the perturbation method, only the initially chosen
sidelobes the number of which is equal to the number of
element spacings to be determined are controlled during
the entire perturbation process and other sidelobes are
uncontrollable. Thus, if N; maximum sidelobes are chosen
and updated at each iteration instead of updating the initiatly
chosen N, sidelobes, we can prevent any sidelobes from
being higher than the specified threshold level.

The basic idea of the modified perturbation method is that
the locations of the new set of maximum sidelobes are
found numerically at each iteration instead of calculating
dw; using {13) in the conventional approach. Then the
perturbation of the spacings is determined by (12) based
on the numerically found w;

Fig, 4 shows the equalized beam patten of a
41-element thinned array by using sub-optimal spacings
from an exponentially weighted least square method as
the inital spacings. It is observed that most sidelobes are
equalized to approximately -20dB. Table 3 lists the initial
spacings from the exponentially weighted least square
method and the final spacings from the modified
perturbation method. From the table, we can see that all
the final spacings are greater than half wavelength, This
is due to the fact that the initial spacings which was
obtained by the least square method are very sparse due
to the reduced number of elements. It is to be noted that
even though the number of elements of the filled array
has been reduced by 60% (from 101 elements to 41
elements), the pattern is still acceptable.

nomalized powor {dB)
s &

Figure 4. Equalized pattern of a 41-clement thinned armay by
modified perturbation method.

To find the amay performance with even fewer elements,
we use the pattern optimized by the exponentially weighted
least square method with a 3l-clement thinned array as
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the initial paem, The beam pattern optimized by the
modified perturbation method is shown in Fig. 5, where
the sidelobes are equalized at about -154B. The initial and
final spacings are shown in Table 4. It is shown that all
the element spacings are larger than half wavelength. It
is found that if the threshold level is set too low, the
sidelobes may mnot be equalized. This phenomenon
becomes noticable as the number of elements decreases.

Table 3. Initial and final spacings of a 4l-clement thinned
array by modified perturbation method.

nth element Initial spacing( A/2) | Final spacing( A /2)
0 0.0 0.0
1 1.39926 1.18173
2 2.86957 2.52091
3 4.31333 4.40371
4 5.71815 5.84733
5 721106 7.48044
6 8.75642 9.31627
7 10.26311 1106781
8 11.77842 12.20355
9 13.41733 13.31907
10 15.18360 15.08453
" 17.01480 16.91031
12 18.89340 18.76788
13 20.78240 20.68640
14 22.68395 2267668
15 24.59053 24.64881
16 26.50319 26.82777
17 28.43129 28.38276
18 30.43402 30.27465
19 34.17922 34.36531
20 50.0 50.0

Table 4. Initial and final spacings of a 3l-element thinned
artay by modified perturbation method.

nth element Initia) spacing( 2 /2) | Final spacing( 4/2)
0 0.0 0.0
1 1.64216 0.99767
2 3.25255 2.36712
3 486178 4.12875
4 6.54008 6.27993
5 8.3035 7.78451
6 10,1319 9.73259
7 1199813 11.70361
8 13.88142 13.34557
9 1577871 15.12941
10 17.6795¢ 18.15315
1 19.58535 19.03433
12 21.5067 21.45972
13 23.46473 23.26545
14 2557514 25.70963
15 50.0 50.0
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Figure 5, Beam pattem of & 3l-element thinned array by
modified perturbation method.

IV, Least Square Approach

In the modified perturbation algorithr, the number of
unknown spacings should be exactly the same as the
number of sidelobes that are involved during each iteration.
If the number of sidelobes that are involved in the
perturbation process is more than the number of unknown
spacings, (12) will become an overdetermined system of
linear equations whose solution may be obtatned by a least
square approach. Assuming the number of sidelobes involved
and the number of unknown spacings are L and N,
respectively, and L > N;, we have (12) in matrix form as

Add=de (14)

where A is a LX N, matrix

in(w!D}) -N],.— wisin{wiD}) -

—NL ? ‘NLﬁhSln(wlD'N.)
-)%,-wgsm(asz') _NL Isin{wiD}) - —NL asin{wiDy)
L
M

wlsin(oLD)) —nlr—m;,sm(w;DQ) —b-@Lsm(@bDN,)

(15)
dd=| 4D} AD} - 4D%]7 (16)
de= [Ael-l-l :-l-l o A£i+1]1' (17)

where 1 is an iteration index. For an overdetermined
system, we can apply the generalized inverse method to
find the solution in the least square sense. Multiplying
both sides of (14) by A" and assuming that (4"A)"
exists, we bave the least square solution as

Ad=(ATA) AT 4¢ 8

In (18), Jd is the coordinate vector with respect to
the column vectors of A when 4 & is orthogonally
projected onto the column space of A. It is assumed that
D, I<n<N, are distinct and thus the column vectors of
A are linearly independeni.

Using (18), we can find /D, 1<n<N, at each
iteration. Fig. 6 shows the beam pattern optimized for
the 3l-element symmetric thinned array where the
number of the unknown spacings is 14 and the number
of sidelobes involved is 16. The sidelobe level is
reduced compared to that of the modified perturbation
approach while the mainbeam width gets a little broader.
However, more sidelobes involved does not necessarily
improve the sidelobe performance. The beam pattern with
20 sidelobes involved is shown in Fig. 7. The sidelobe
performance is found to be poorer compared with Fig. 6.

20 : 0 ‘20
i angle (dagrea)

Figure 6. Beam pattern of a 31-clement symmetric thinned
armay by Least square approach with 16 sidelobes.
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Figure 7. Beam pattern of a 3i-element symmetric thinned
array by generalized inverse approach with 20
sidelobes.

V. Conclusions

A least square approach was proposed for synthesis of
an optimal beam pattern with uniform sidelobes in a
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thinned sensor amay to improve the atray performance.
In the modified perurbation method, the optimum
element spacing is obtained by iteratively solving a set
of linear equations corresponding to the number of
maximum sidelobes which is equal to the number of
element spacings.

Since the number of sidelobes is greater than that of
element spacings in the thinned array, the least square
method may be employed in finding an optimal solution.
A better performance is expected in the least square
selection in the sense that more sidelobes are involved in
the optimization process compared with the modified
perturbation method.

The simulation results demonstrate that the least square
approach performs better than the modified perturbation
method even though the array performance depends on
the number of sidelobes involved.
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