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Performance Improvement of a Modified Perturbation Method via a Least 
Square Approach for Sensor Arrays

*Byong Kun Chang

Abstract

This paper concerns a modified perturbation method and a least square approach to synthesize an optimum beam 

pattern of a thinned sensor array with respect to element spacing. In the modified perturbation, the antenna spacing is 
perturbed iteratively such that the sidelobes are equalized via a linear programming approach. The least square approach is 
proposed to improve the array performance for the thinned array using the fact that the number of sidelobes is more than 
the number of element spacings.

It is demonstrated that the least square approach performs better than the modified perturbation method.

I. Introduction

A linear sensor array is an array whose elements are 

arranged on a straight line. If the elements are spaced 
uniformly every half wa\ elength, the array is called a 

filled array. If the array consists of fewer number of 

elements than the filled array with the same array length, 
the array is called a thinned array.

The thinned array is an efficient system which 
prevents the degradation of array performance due to 

mutual coupling effects and also reduces the array cost 
by employing less number of sensor elements compared 

to a half-wavelength spaced tilled array. The origin of 

the concept for thinned arrays dates back to the work of 
Unz[l] in the 1950's. Ever since then, the thinned array 
has been widely investigated in such areas as radar[2, 3], 

astronomy[4] and satellite communication[5]. It is known 
that when the number of elements in a filled array is 

reduced, the sidelobe performance is degraded due to the 
less of degrees of freedom to control the beam pattern. 

The problem in the thinned array is how to synthesize 
an optimum pattern with reduced number of elements 
which satisfies given design specifications while the 

performance is compara비e to that of the filled array. A 

linear sensor array is shown in Fig.l.
In this paper, it is concerned that the thinned array is 

designed such that the sidelobe level is equalized in a 
Dolph-Chebyshev sense to counteract the interferences 

uniformly distributed over the array visual range. A 
certain set of optimum element spacings is found by an 

iterative perturbation of element spacings with uniform
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array weights. A conventional perturbation method[6] is 

modified such that an optimum pattern for the thinned 
array is efficiently synthesized by locating the sidelobes 
numerically.

Figure 1. Linear sensor array.

II. Perturbation Method

One way to find a certain set of element spacings 

such that the sidelobe level of the thinned array factor is 
equalized as in the pattern of Dolph-Chebyshev filled 

array is to reduce the level of the higher sidelobes by 

sacrificing lower sidelobes as in the perturbation method 

proposed by M. T. Ma [6].
The perturbation method equalizes the sidelobe levels 

iteratively using an arbitrary initial pattern by perturbing 
the element spacings. To this end, either the element 
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spacing or the current or both may be perturbed. From a 
practical point of view, we consider the case of 
perturbing the element spacing while maintaining the 
uniform current.

The array factor of a symmetric thinned array of 2N\ 

elements is given by

Mtw) = 2 W flncos((wZ)n) (1)
n= 1

where the current a„ is assumed to be uniform. 

Normalizing the current, we get

H( <v) = 畠 cos ( (2)

Suppose that L sidelobes are located at 

co, \ i <. L and the corresponding sidelobe levels 

are H{ a)i) ~ Since the derivative of Zf((y) with 

respect to o)at each sidelobe m will be zero, we have 

the following equations

G = ■寿 cos (<y 1 M i M L (3)
iVj »=i

丈“提in(纵£)”)= 0, 1 M M L (4)
n= 1

Note that for the linear equations in (3) and (4), the 

solution for a), and Dn will be unique only when the 

L = N” i.e., the number of 어delobes to be controlled is 

the same as the number of the unknown element spacings.

In the perturbation method, the element spacing Dn is 

perturbed iteratively such that N\ sidelobes get closer to a 

specified threshold level. With an initial choice of 

spacings D《the corresponding o)J and e J of the 

N\ highest sidelobes ace determined. If the initial 

spacing is perturbed by dD % we have

，+Z"， (5)

As a result, the positions and the levels of these N\ 

sidelobes change accordingly as follows.

a)}= o)? +? (6)

e ；==£» + zJ£? (7)

Then, (3) and (4) become

e !=击為cos(((必+ /必)(硏+ 〃*)), \ i<. L

(8)
£i(Z* + /Q2)sin(( (D* + g))

=0, 1 M " L (9)

Assuming sm기 1 perturbations, we use the following 
approximations in (8) and (9)

sin(P^J<u ? + o)° + U(o ?)

a DU<o ?+<u (10)

cos(Z) ?+ <o 英 % + 4D 00 ?) a 1 (11)

Then we have

Z" ! = (勿") (12)

/必幺(砒)2海(妃况)+必务勇如2海(必W) 
»=1 1

4- £ /£)涌}3为)2) = 0 «= 1

(13)

Assuming that is a small fraction of the 

difference of the actual sid이obe level of the z'th sidelobe 

and a specified threshold level, which is set as a desired 
equalized sidelobe level, we perturb the spacings iteratively 
using a linear programming approach until all the 
sidelobes are equalized. It is to be noted that to ensure 

unique solutions of ADn and /织 at each iteration, the 

number of sidelobes L to be controlled should be equal to 

the number of element spacings N、Also, the threshold 

level needs to be chosen very carefully such that it is a 

median of all the sidelobe levels. Thus, the higher 

sidelobes decrease by sacrificing the lower sidelobes. If 
the threshold level is set too low, there may be no 

solution to the linear equations of (12) or the resulting 
pattern will be degraded.

Consider a symmetric 20-element filled array with 
initial element spacing uniform. The number of sidelobes 

on one side of the mainbeam is nine and the number of 

unknown spacings is nine with the two end elements 

fixed. The initial and synthesized beam patterns are 

shown in Fig. 2. The initial and final spacings are 

shown of Table 1. It is shown that the levels of the first 

three higher sidelobes are reduced by sacrificing the 
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lower ones away from the mainbeam. The mainbeam 
width becomes slightly broader. Also some of the 

spacings between two neighboring elements are much 
less than half wavelength. Thus mutual coupling effects 

are significant for the case of antenna elements. Since 

only N\ sidelobes are controlled in the perturbation 

method, if a pattern with more than N、sidelobes is 

used as the initial pattern, some of the sidelobes can not 

be controlled. For example, if a 20-element symmetric 

thinned array with inter-element spacing 0.8/1 is used, 

the initial pattern has 20 sidelobes. Thus 11 sidelobes 
will be out of control. The initial and final patterns are 

compared in Fig. 3 and the conesponding spacings are 

listed in Table 2. It is observed that。미y 9 sidelobes are 
equalized while other sidelobes are not controlled.

Figure 2. Beam pattern of a 20-element symme버c array: 
equalized pattern (solid line); initial pattern (dotted 
line).

•BQ -00 *40 •关土二; 8:： 4。 。：•LEQ "一
angle (degree)

Figure 3. Comparison of the initial (dotted line) and 
equalized (solid line) patterns of a 20-element 
symmetric thinned array.

Table 1. Initial and final spacings of a 20-element symmetric 
filled array by perturbation method.

nth element Initial spacing( A /2) Final spacing( A /2)
1 0.5 0.40077
2 1.5 1.15678
3 2.5 2.03846
4 3.5 2.75360
5 4.5 3.75888
6 5.5 4.57215
7 6.5 5.70444

8 7.5 6.81071
9 8.5 8.35283

10 9.5 9.5

Table 2. Initial and final spacings of a 20-element symmetric 
thinned array by perturbation method.

nth element Initial spacing(/“2) Final spacing(人/2)
1 0.8 0.79395
2 2.4 , 2.17265
3 4.0 3.52181
4 5.6 4.52668
5 7.2 6.16170

6 8.8 7.77555
7 10.4 9.43360

8 12.0 10.90503
9 13.6 13.33368

10 21.85 21.85

From the above discussions, some drawbacks of the 

perturbation method have been observed.

1. Since the array should initially be equally spaced 

with 0.5人 spacing to produce a pattern with the 

same number of sidelobes as the number of 
element spacings, some of the final spacings are 

less than half wavelength. As a result, the mutual 
coupling effects increase for the case of antenna 
arrays.

2. If the number of the sidelobes in the initial pattern 

is more than the number of element spacings, some 
of the sidelobes may not be controlled.

Therefore, the perturbation method is not suitable for 
the thinned array where the number of sidelobes is more 
than the number of element spacings to be determined. 

To overcome the shortcomings of the perturbation 

method, a modified perturbation method is proposed.
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III. Modified Perturbation Method

In the perturbation method, only the initially chosen 

sidelobes the number of which is equal to the number of 
element spacings to be determined are controlled during 
the entire perturbation process and other s너elobes are 

uncontrollable. Thus, if N\ maximum sidelobes are chosen 
and updated at each iteration instead of updating the initially 

chosen M sidelobes, we can prevent any sidelobes from 
being higher than the specified threshold level.

The basic idea of the modified perturbation method is that 
the locations of the new set of maximum 蔔delobes are 
found numerically at each iteration instead of calculating 

血「using (13) in the conventional approach. Then the 

perturbation of the spacings is determined by (12) based 

on the numerically found a)*

Fig. 4 shows the equalized beam pattern of a - 

41-element thinned array by using sub-optimal spacings 

from an exponentially weighted least square method as 

the inital spacings. It is observed that most sidelobes are 
equalized to approximately -20dB. Table 3 lists the initi이 

spacings from the exponentially weighted least square 

method and the Hnal spacings from the modified 

perturbation method. From the table, we can see that all 

the final spacings are greater than half wavelength. This 

is due to the fact that the initial spacings which was 
obtained by the least square method are very sparse due 
to the reduced number of elements. It is to be noted that 

even though the number of elements of the filled array 

has been reduced by 60% (from 101 elements to 41 

elements), the pattern is still acceptable.
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Figure 4. Equalized pattern of a 41-element thinned array by 
modified perturbation method.

To find the array performance with even fewer elements, 
we use the pattern optimized by the exponentially weighted 
least square method with a 31-element thinned array as

the initial pattern. The beam pattern optimized by the 

modified perturbation method is shown in Fig. 5, where 
the sidelobes are equalized at about ~l5dB. The initial and 

final spacings are shown in Table 4. It is shown that all 

the element spacings are larger than half wavelength. It 
is found that if the threshold level is set too low, the 

sidelobes may not be equalized. This phenomenon 

becomes noticable as the number of elements decreases.

Table 3- Initi시 and final spacings of a 41-element thinned 
array by modified perturbation method.

nth element Initial spacing( A /2) Final spacing( A /2)

0 0.0 0.0
1 1.39926 1.18173
2 2.86957 2.52091
3 4.31333 4.40371
4 5.71815 5.84733
5 7.21106 7.48044
6 8.75642 9.31627
7 10.26311 11.06781
8 11.77842 12.20355
9 13.41733 13.31907

10 15.18360 15.08453
11 17.01480 16.91031
12 18.89340 18.76788
13 20.78240 20.68640
14 22.68395 22.67668
15 24.59053 24.64881
16 26.50319 26.42777
17 28.43129 28.38276
18 30.43402 30.27465
19 34.17922 34.36531
20 50.0 50.0

Table 4. Initial and final spacings of a 31-element thinned 
array by modified perturbation method.

nth element Initial spacing( A /2) Final spacing(人/2)

0 0.0 0.0

1 1.64216 0.99767

2 3.25255 2.36712

3 4.86178 4.12875

4 6.54008 6.27993

5 8.3035 7.78451

6 10.1319 9.73259

7 11.99811 11.70361

8 13.88142 13.34557

9 15.77871 15.12941

10 17.67951 18.15315

11 19.58535 19.03433

12 21.5067 21.45972

13 23.46473 23.26545

14 25.57514 25.70963

15 50.0 50.0
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Figure 5. Beam pattern of a 31-element thinned array by 
modified perturbation method.

IV, Least Square Approach

In the modified perturbation algorithm, the number of 

unknown spacings should be exactly the same as the 

number of sidelobes that are involved during each iteration. 
If the number of sidelobes that are involved in the 

perturbation process is more than the number of unknown 
spacings, (12) will become an overdetermined system of 

linear equations whose solution may be obtained by a least 
square approach. Assuming the number of sidelobes involved 

and the number of unknown spacings are L and M, 
respectively, and L > N、we have (12) in matrix form as

AAd= Ae (14)

where A is a LXN\ matrix

In (18), Nd is the coordinate vector with respect to 
the column vectors of A when 2/ e is orthogonally 
projected onto the column space of A. It is assumed that

l<n<-Ni are distinct and thus the column vectors of 

A are linearly independent.
Using (18), we can find /Z* l<n<Ni at each 

iteration. Fig. 6 shows the beam pattern optimized for 
the 31-element symmetric thinned array where the 
number of the unknown spacings is 14 and the number 

of sidelobes involved is 16. The sidelobe level is 

reduced compared to that of the modified perturbation 

approach while the mainbeam width gets a little broader. 
However, more sidelobes involved does not necessarily 

improve the sidelobe performance. The beam pattern with 

20 sidelobes involved is shown in Fig. 7. The sidelobe 

performance is found to be poorer compared with Fig. 6. 

Figure 6. Beam pattern of a 31-element symmetric thinned 
array by Least square approach with 16 sidelobes.

击 c*sin（巩£）；） … 击 아?sin （"硏圻） 

击以sin（a*g）法a班in（成曷）… 击耕丽（徵爲）

（戒•研）成，sin（矶4）…

(15)

(16)

zJe=[ Je{+1 J4+1 •-金广卩 (17)

Figure 7. Beam pattern of a 31-element symmetric thinned 
array by generalized inverse approach with 20 
sidelobes.

where i is an iteration index. For 

system, we can apply the generalized 
find the solution in the least square

an overdetermined 

inverse method to 
sense. Multiplying

both sides of (14) by AT and assuming that (ATA)-1 

exists, we have the least square solution as V. Conclusions

Ad=(ATA)~lAT Ae (18) A least square approach was proposed for synthesis of 
an optimal beam pattern with uniform sidelobes in a

Ad= [ JZ)； /D；…血)"'
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thinned sensor array to improve the array performance. 
In the modified perturbation method, the optimum 

element spacing is obtained by iteratively solving a set 

of linear equations corresponding to the number of 
maximum sidelobes which is equal to the number of 
element spacings.

Since the number of sidelobes is greater than that of 
element spacings in the thinned array, the least square 

method may be employed in finding an optimal solution. 
A better performance is expected in the least square 

selection in the sense that more sidelobes are involved in 
the optimization process compared with the modified 

perturbation method.
The simulation results demonstrate that the least square 

approach performs better than the modified perturbation 

method even though the array performance depends on 

the number of sidelobes involved.
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