The relationships between combined estimators and generalized least squares estimators in block designs are reviewed. Here combined estimators mean the best linear combination of intrablock and interblock estimaters. It is well known that only for balanced incomplete block designs the combined estimators of Yates and of the generalized least squares estimators give the same result. In this paper, a general form of the combined estimators for treatment effects is derived and it can be seen that such estimators are equivalent to the generalized least squares estimators.
위상 펼침 (phase unwrapping)과 최소자승(least-squares) 기법들을 이용한 기존 디지털 주파수 변별기 (Digital Frequency Discriminator: DFD) 설계를 바탕으로, 본 논문에서는 주파수 판별 대역이 4배 확장한 새로운 DFD 설계를 제안한다. 구체적으로, 주파수 판별 대역을 기존 2-6GHz에서 2-18GHz로 4배 확장함에 따라 주파수 판별 정확도를 높이기 위해 DFD 내의 지연선 수가 증가되고, 이에 따른 주파수 추정 연산량이 증가되는데, 본 논문에서는 이러한 2-18GHz 대역 주파수 판별을 위해 보다 효율적인 주파수 추정 알고리즘을 제안한다. 특히, 제안하는 주파수 추정 방법에서는 기존 방법인 위상 펼침 기법을 기반으로 펼친 위상의 후보군을 만들되, 각 지연선에서 발생할 수 있는 위상 잡음을 미리 추정하여, 적절한 펼친 위상 후보군을 선택하는 새로운 주파수 후보군 선택 방법을 제안한다. 이렇게 선택된 위상 후보군만을 최소자승 기법에 적용하여 주파수를 추정함으로써, 결과적으로 기존 DFD의 주파수 추정에 비해 연산량을 줄일 수 있다. 끝으로, 제안한 DFD에 대한 주파수 변별 방법을 비교 분석하고, 시뮬레이션을 통해 제안된 방법의 주파수 판별 성능을 검증한다.
In the multiple linear regression model a class of weighted least absolute error estimaters, which minimize the sum of weighted absolute residuals, is proposed. It is shown that the weighted least absolute error estimators with Wilcoxon scores are equivalent to the Koul's Wilcoxon type estimator. Therefore, the asymptotic efficiency of the proposed estimator with Wilcoxon scores relative to the least squares estimator is the same as the Pitman efficiency of the Wilcoxon test relative to the Student's t-test. To find the estimates the iterative weighted least squares method suggested by Schlossmacher is applicable.
화학공정 설계에서 공정의 위험성 판단은 중요한 부분이다. 실제 화학공정에 사용되는 가연성 물질의 화재 및 폭발 위험성을 판단하는 인화점에 대한 예측은 그 방법 중의 하나이다. 본 연구에서는 2성분계 가연성 물질의 인화점에 대한 실험 자료를 이용하여 다변량 통계 분석법(partial least squares(PLS), quadratic partial least squares(QPLS))을 이용하여 2성분계 혼합물의 인화점을 예측하였고, 기존의 Raoult의 법칙과 Van Laar 식에 의한 예측값과 비교해 보았다.
A system identification is to measure the output in the presence of a adequate input for the controlled system and to estimate the mathematical model in the basic of input output data. In the system identification, it is possible to estimate the true parameter values by the adjusted least squares method in the input-output case of no observed noise, and it is possible to estimate the true parameter values by the total least squares method in the input-output case with the observed noise. In recent the adjusted least squares method is suggested as a consistent estimation method in the system identification not with the observed noise input but with the observed noise output. In this paper we have developed the adjusted least squares method from the least squares method and have made certain of the efficiency in comparing the estimating results with the generating data by the computer simulations.
Journal of the Korean Data and Information Science Society
/
제14권2호
/
pp.337-343
/
2003
In this paper we present the prediction interval estimation method using bootstrap method for least squares support vector machine(LS-SVM) regression, which allows us to perform even nonlinear regression by constructing a linear regression function in a high dimensional feature space. The bootstrap method is applied to generate the bootstrap sample for estimation of the covariance of the regression parameters consisting of the optimal bias and Lagrange multipliers. Experimental results are then presented which indicate the performance of this algorithm.
Communications for Statistical Applications and Methods
/
제18권6호
/
pp.817-835
/
2011
The moment(MM) and least squares(LS) estimations of the parameters are derived for the Pareto distribution in the presence of outliers. Further, we have derived a mixture method(MIX) of estimations with MM and LS that shows that the MIX is more efficient. In the final section we have given an example of actual data from a medical insurance company.
Journal of the Korean Data and Information Science Society
/
제10권1호
/
pp.193-198
/
1999
The estimation of parameters in regression models with multiplicative errors is usually based on the gamma or log-normal likelihoods. Under reciprocal misspecification, we compare the small sample efficiencies of two sets of estimators via a Monte Carlo study. We further consider the case where the errors are a random sample from a Weibull distribution. We compute the asymptotic relative efficiency of quasi-likelihood estimators on the original scale to least squares estimators on the log-transformed scale and perform a Monte Carlo study to compare the small sample performances of quasi-likelihood and least squares estimators.
Communications for Statistical Applications and Methods
/
제3권2호
/
pp.299-307
/
1996
This article is concerned with the algorithms for the least median of squares estimator. An algorithm based on the $L{\infty}$ .inf.-estimation procedure is proposed in an attempt to improve the optimality of the estimate. And it is shown that the proposed algorithm yields more optimal estimate than the traditional resampling algorithms. The proposed algorithm employs a linear scaling transformation at each iteration of the$L{\infty}$-algorithm to deal with its computational inefficiency problem.
This work deals with nonlinear least squares method for estimating unknown universial constants C in a computer simulation code real experimental data(or database) and computer simulation data. The best linear unbiased predictor based on a spatial statistical model is fitted from the computer simulation data. Then nonlinear least squares estimation method is applied to the real data using the fitted prediction model(or simulation predictor) as if it were the true simulation model. An application to the computational nuclear fusion device is presented.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.