DOI QR코드

DOI QR Code

Design of A 2-18GHz Digital Frequency Discriminator using Least-squares and Candidate-selection Methods

최소자승법과 후보군 선택 기법을 이용한 2-18GHz 디지털 주파수 변별기 설계

  • Park, Jin Oh (Electronic Warfare R&D Lab., LIG Nex1 Co., Ltd.) ;
  • Nam, Sang Won (Department of Electronic Eng., Hanyang Univ.)
  • 박진오 (LIG넥스원 전자전연구센터) ;
  • 남상원 (한양대학교 융합전자공학부)
  • Received : 2013.01.23
  • Published : 2013.06.25

Abstract

Based on the conventional 2-6GHz digital frequency discriminator (DFD) using the phase unwrapping and least-squares techniques, we propose a new 2-18GHz DFD. To compensate for lowered-precision frequency estimation due to the expanded bandwidth, the proposed DFD design employs more delay lines, accordingly accompanying high complexity. Thus, a new computationally efficient frequency estimation algorithm is also presented to overcome such high computational burden. More specifically, the proposed frequency estimation algorithm is basically based on the conventional phase unwrapping technique, along with a new candidates selection for the unwrapped phases under the condition that the phase margin is known. As a result, the computational burden required for the least-squares technique can be reduced. Finally, simulation results are provided to demonstrate the effectiveness of the proposed approach, compared with those of the conventional DFD's.

위상 펼침 (phase unwrapping)과 최소자승(least-squares) 기법들을 이용한 기존 디지털 주파수 변별기 (Digital Frequency Discriminator: DFD) 설계를 바탕으로, 본 논문에서는 주파수 판별 대역이 4배 확장한 새로운 DFD 설계를 제안한다. 구체적으로, 주파수 판별 대역을 기존 2-6GHz에서 2-18GHz로 4배 확장함에 따라 주파수 판별 정확도를 높이기 위해 DFD 내의 지연선 수가 증가되고, 이에 따른 주파수 추정 연산량이 증가되는데, 본 논문에서는 이러한 2-18GHz 대역 주파수 판별을 위해 보다 효율적인 주파수 추정 알고리즘을 제안한다. 특히, 제안하는 주파수 추정 방법에서는 기존 방법인 위상 펼침 기법을 기반으로 펼친 위상의 후보군을 만들되, 각 지연선에서 발생할 수 있는 위상 잡음을 미리 추정하여, 적절한 펼친 위상 후보군을 선택하는 새로운 주파수 후보군 선택 방법을 제안한다. 이렇게 선택된 위상 후보군만을 최소자승 기법에 적용하여 주파수를 추정함으로써, 결과적으로 기존 DFD의 주파수 추정에 비해 연산량을 줄일 수 있다. 끝으로, 제안한 DFD에 대한 주파수 변별 방법을 비교 분석하고, 시뮬레이션을 통해 제안된 방법의 주파수 판별 성능을 검증한다.

Keywords

References

  1. P.W. East, "Design techniques and performance of digital IFM," IEE Proc.-F Communications, Radar and Signal Processing, vol. 129, no. 3, pp. 154-163, Jun. 1982. https://doi.org/10.1049/ip-f-1.1982.0024
  2. K. Burns, "Tracking trends in military IFMs and DFDs," Microwaves & RF, June 2009. (http://mwrf.com/military/tracking-trends-military-ifms-and-dfds).
  3. L. Xiang, J. Yonghua, Z. Longjun, T. Zhikai, and G. Weiliang, "A new method in DFD design," Proc. Microwave Conf. APMC, Suzhou, China, vol. 1, Dec. 2005.
  4. J. Helton, C.H. Chen, D.M. Lin, and J.B.Y. Tsui, "FPGA-Based 1.2 GHz bandwidth digital instantaneous frequency measurement receiver," Proc. 9th ISQED Conf. California, USA, pp. 568-571, Mar. 2008.
  5. S. Mahlooji and K. Mohammadi, "Very high resolution digital instantaneous frequency measurement receiver," Proc. Int. Conf. on Signal Processing Systems, Nebraska, USA, pp. 177-181, May 2009.
  6. J. Zhou, S. Aditya, P.P. Shum, and J. Yao, "Instantaneous frequency measurement using a photonic microwave filter with an infinite impulse response," IEEE Photonics Technol. Lett., vol. 22, no. 10, pp. 682-684, May 2010. https://doi.org/10.1109/LPT.2010.2043946
  7. J.B.Y. Tsui, Microwave Receivers With Electronic Warfare Applications, Krieger Publishing Co., Malabar, 1992.
  8. J.B.Y. Tsui, Instantaneous frequency measure ment receiver with digital processing, U.S. Patent 4633516, Dec. 1986.
  9. Wide Band System, Inc., "Digital frequency discriminator," Wide Band System Technical Product Bulletin, no. 104, 1999. (http//www.widebandsystems.com/Digital_Frequency_Discriminators.pdf).
  10. E. Slepian, "Estimation of signal parameters in the presence of noise," IRE Trans. Inform. Theory., vol. IT-3, pp. 68-89, Mar. 1957.
  11. S.A. Tretter, "Estimating the frequency of a noisy sinusoid by linear regression," IEEE Trans Inform. Theory, vol. IT-31, pp. 832-835, Nov. 1985.
  12. S. Kay, "A fast and accurate single frequency estimator," IEEE Trans. Acoustics Speech, Signal Processing, vol. 37, no. 12, pp. 1987-1989, Dec. 1989. https://doi.org/10.1109/29.45547
  13. A.V. Oppenheim and R.W. Schafer, Discrete-Time Signal Processing, Prentice Hall, New Jersey, USA, 1989.
  14. A.V. Oppenheim and R.W. Schafer. "From frequency to quefrency: A history of the cepstrum," IEEE Signal Processing Mag., vol. 21, no. 5, pp. 95-106, 2004. https://doi.org/10.1109/MSP.2004.1328092
  15. M.L. Fowler, "Phase-based frequency estimation: A review" Digital Signal Processing, vol. 12, no. 4, pp. 590-615, Elsevier Inc., Ontario, 2002. https://doi.org/10.1006/dspr.2001.0415
  16. R.G. McKilliam, B.G. Quinn, I.V.L. Clarkson, and B. Moran, "Frequency estimation by phase unwrapping," IEEE Trans. on Signal Processing, vol. 58, no. 6, Jun. 2010.
  17. S.Y. Park, Y.S. Song, H.J. Kim, and J.S. Park, "Improved method for frequency estimation of sampled sinusoidal signals without iteration," IEEE Trans. on Instrumentation and Measure ment, vol. 60, no. 8, Aug. 2011.
  18. W.B. Sullivan, "Gauging limitations on DFD performance," Microwaves & RF, Nov. 2005. (http://mwrf.com/systems/gauging-limitations-dfd-performance)
  19. G.C. Liang, C.F. Shih, R.S. Withers, B.F. Cole, and M.E. Johansson, "Space-qualified superconductive digital instantaneous frequency measurement subsystem," IEEE Trans. on Microwave Theory and Techniques, vol. 44, no. 7, Jul. 1996.
  20. J.O. Park, J.B. Seo, J.H. Kim, and S.W. Nam, "Design of a digital frequency discriminator using least squares based phase calibration," Proc. 2010 SICE Annual Conf., Taipei, Taiwan, pp. 1768-1772, Aug. 2010.