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Abstract
The moment(MM) and least squares(LS) estimations of the parameters are derived for the Pareto distribution

in the presence of outliers. Further, we have derived a mixture method(MIX) of estimations with MM and LS
that shows that the MIX is more efficient. In the final section we have given an example of actual data from a
medical insurance company.
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1. Introduction

The Pareto distribution is used as a model for insurance, business, economics, engineering, reliabil-
ity, hydrology, and mineralogy. These models have been studied by Quandt (1996), Malik (1970),
Asrabadi (1990), Hossain and Zimmer (2000), and Nadeau and Teorey (2003). The Pareto distribu-
tion was originally used to describe the allocation of wealth among individuals since it seemed to
adequately show the way that a larger portion of the wealth in society is owned by a smaller per-
centage of the people in that society. It can be shown that from a probability density function(pdf),
graph of the population f (x), the probability or fraction of f (x) that own a small amount of wealth per
person is high. The probability then steadily decreases as wealth increases.

Another application of this distribution is for On-Line Analytical Processing(OLAP) view size
estimation. Nadeau and Teorey (2003) used Pareto distribution for OLAP provides useful informa-
tion quickly from large amounts of data residing in a data warehouse. To improve the quickness of
response to queries, pre-aggregation is a useful strategy. However, it is usually impossible to pre-
aggregate along all combinations of the dimensions. The multi-dimensional aspects of the data lead
to combinatorial explosion in the number and potential storage size of the aggregates. Nadeau and
Teorey (2003) suggested to selectively pre-aggregate. Cost/benefit analysis involves estimating the
storage requirements of the aggregates in question. They (Nadeau and Teorey, 2003) presented an
original algorithm to estimate the number of rows in an aggregate based on the Pareto distribution
model. They also tested the Pareto model algorithm empirically against four published algorithms,
and concluded that the Pareto model algorithm is consistently the best of these algorithms to estimate
view size.

Hossain and Zimmer (2000) compared methods of estimation for the parameters of the Pareto dis-
tribution to determine which method provides the better estimates when the observations are censored.
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They used unweighted least squares(LS), the maximum likelihood estimate(MLE) and modified like-
lihood estimate(MML) for censored and uncensored data. They proposed that the LS method be gen-
erally preferred over the ML and MML methods to estimate the parameters of the Pareto distribution
for complete samples.

Dixit and Jabbari Nooghabi (2011) have considered the Pareto distribution in the presence of
outliers when the parameter α is unknown and the parameters β and θ are known. ML and uniformly
minimum variance unbiased estimator(UMVUE) of α, the pdf, cumulative distribution function(cdf)
and the rth moment are derived. These estimators are compared empirically for their mean square
error(MSE) and are investigated with the help of numerical technique. They have shown that MLE of
pdf and cdf are better than the UMVUEs. In addition, it is shown that the expectation of the MLE of
rth moment does not exist. Finally, they have illustrated these methods with the help of real data from
an insurance company.

Let a set of random variables (X1, X2, . . . , Xn) represent the claim amounts of a medical cure
insurance company. It is assumed that the claims of some of passengers are β times higher than
claims of the passengers who have normal injuries.

Hence, we assume that the random variables (X1, X2, . . . , Xn) are such that any k of them are
distributed with pdf

f2(x;α, β, θ) =
α(βθ)α

xα+1 , 0 < βθ ≤ x, α > 0, β > 1, θ > 0, (1.1)

and the remaining (n − k) random variables are distributed as

f1(x;α, θ) =
αθα

xα+1 , 0 < θ ≤ x, α > 0. (1.2)

In this paper, we assume that all three parameters are unknown and we have derived the moment(MM),
LS and mixture method(MIX) of MM and LS estimators of the parameters of the Pareto distribution in
the presence of outliers. We have shown that the MLE of these parameters does not exist. In addition,
it is shown that the MIX estimator of the parameters are more efficient than their MM. Finally, we
give an example of claims for a medical insurance company.

2. Joint Distribution of (X1, X2, . . . , Xn)(X1, X2, . . . , Xn)(X1, X2, . . . , Xn) with kkk Outliers

The joint pdf of (X1, X2, . . . , Xn) in the presence of k outliers is given by

f (x1, x2, . . . , xn;α, β, θ) =
αnθnαβkα

C(n, k)

 n∏
i=1

xi

−(α+1)

×
n−k+1∑
A1=1

n−k+2∑
A2=A1+1

· · ·
n∑

Ak=Ak−1+1

k∏
j=1

I(xA j − βθ)I(xA j − θ), (2.1)

where C(n, k) = n!/{k!(n − k)!} and I is the indicator function defined as

I(y) =
{

1, y > 0,
0, otherwise.

Note that marginal distribution of Xi is

f (xi;α, β, θ) = b
α(βθ)α

xα+1
i

I(xi − βθ) + b̄
αθα

xα+1
i

I(xi − θ), α > 0, β > 1, θ > 0, (2.2)



Efficient Estimation of the Parameters of the Pareto Distribution in the Presence of Outliers 819

where b = k/n, b̄ = 1 − b and (X1, X2, . . . , Xn) are not independent (Dixit, 1987, 1989; Dixit and
Nasiri, 2001; Dixit and Jabbari Nooghabi, 2011).

3. Method of Moment

Let X1, X2, . . . , Xn be a random sample of size n from the Pareto distribution in the presence of outliers.
If we define 

m1 = E(X),

m2 = E(X)2,

m3 = E
(

1
X

)
,

m4 = E
(

1
X

)2

.

(3.1)

By using the pdf of X in Equation (2.2), we obtain

m1 =

(
α

α − 1

)
θ
(
bβ + b̄

)
,

m2 =

(
α

α − 2

)
θ2

(
bβ2 + b̄

)
,

m3 =

(
α

α + 1

)
θ−1

(
bβ−1 + b̄

)
,

m4 =

(
α

α + 2

)
θ−2

(
bβ−2 + b̄

)
.

(3.2)

Therefore

m1m3 =
α2

α2 − 1

(
bβ + b̄

) (
bβ−1 + b̄

)
, (3.3)

and

m2m4 =
α2

α2 − 4

(
bβ2 + b̄

) (
bβ−2 + b̄

)
. (3.4)

Now, if we find α from Equation (3.3) and substitute it in Equation (3.4) and using some elementary
algebra, then

Aβ4 + Bβ3 +Cβ2 + Dβ + E = 0, (3.5)

where 
A = E = m1m3bb̄,
B = D = −4m2m4bb̄,

C = 3m2m4m3m1 + (m1m3 − 4m2m4)
(
b2 + b̄2

)
.

(3.6)
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According to Abramowitz and Stegun (1970, p.17) and Pachner (1984, p.6.1), we obtain the roots of
the quartic equation as

β̂1mm =
z

1
2
1 + z

1
2
2 + z

1
2
3

2
− B

4A
, (3.7)

β̂2mm =
z

1
2
1 − z

1
2
2 − z

1
2
3

2
− B

4A
, (3.8)

β̂3mm =
−z

1
2
1 + z

1
2
2 − z

1
2
3

2
− B

4A
, (3.9)

and

β̂4mm =
−z

1
2
1 − z

1
2
2 + z

1
2
3

2
− B

4A
, (3.10)

where z1, z2 and z3 are the roots of cubic equation z3 + 2pz2 + (p2 − 4r)z − q2 = 0,

p =
C
A
− 6

( B
4A

)2

,

q =
D
A
+ 2

B
4A

[
4
( B
4A

)2

− C
A

]
,

and

r =
E
A
+

B
4A

{
B

4A

[
C
A
− 3

( B
4A

)2]
− D

A

}
.

Character of the roots of the quartic equation:

Let

F =
3AB − 3B2 +C2

12
,

G =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A
B
4

C
6

B
4

C
6

B
4

C
6

B
4

A

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

and

H =
AC
6
− B2

16
.

Then the discriminant is

∆∗ = F3 − 27G2.



Efficient Estimation of the Parameters of the Pareto Distribution in the Presence of Outliers 821

If the two roots are equal, then ∆∗ = 0. Excluding this case, any complex roots occur in pairs and the
possible cases are:

(1) If ∆∗ < 0, two roots are real and two are complex.

(2) If ∆∗ > 0 and both H and 2HF − 3AG are negative, all the roots are real.

(3) If ∆∗ > 0 and at least one of two H and 2HF − 3AG is positive, then all the roots are complex.

Note: One should note that according to Pachner (1984, p.6.1), if all three roots z1, z2 and z3 are real
and positive, then all four roots β̂1mm, β̂2mm, β̂3mm and β̂4mm are real and we may obtain more than
one feasible solution in either case. In such a situation, estimates can be selected by evaluating the
likelihood for each feasible solution and choosing the one that maximizes likelihood.

Then, for finding the moment estimator of α, we replace the moment estimator of β in Equation
(3.3). So

α̂mm =

 m1m3

m1m3 −
(
bβ̂mm + b̄

) (
bβ̂−1

mm + b̄
) 

1
2

. (3.11)

Finally, by using the first equation in Equation (3.2), we obtain the moment estimator of θ as

θ̂mm =
m1 (α̂mm − 1)

α̂mm

(
bβ̂mm + b̄

) . (3.12)

4. Maximum Likelihood Estimator

Let X1, X2, . . . , Xn be a random sample of size n from the Pareto distribution in the presence of outliers.
So from Equation (2.1)  θ̃ = MLE(θ) = X(1), θ < x(1) < βθ,

β̃θ = MLE(βθ) = X(1), βθ < x(1),
(4.1)

where X(1) is the first order statistic.
Then, with substituting these equations in the likelihood function we find the likelihood equation

respect to α as 
n
α
+ n ln

(
x(1)

)
+ k ln(β) − ln(t) = 0, θ < x(1) < βθ,

n
α
+ n ln

(
x(1)

) − (n − k) ln(β) − ln(t) = 0, βθ < x(1),
(4.2)

where T =
∏n

i=1 Xi. So we can find the MLE of α and it is given as α̃.

α̃ =


n

ln(t) − n ln
(
x(1)

) − k ln(β)
, θ < x(1) < βθ,

n
ln(t) − n ln

(
x(1)

)
+ (n − k) ln(β)

, βθ < x(1).
(4.3)
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Finally, to find the MLE of β, we replace the above equations in the likelihood function of β. If
θ̃ = x(1), then the likelihood function of β is

ln
(
L
(
x, β

))
≃ n ln

(
n

ln(t) − n ln
(
x(1)

) − k ln(β)

)
− n.

Thus, ln(L(x, β)) is increasing as β increasing.
Also, if β̃θ = x(1), then the likelihood function of β is

ln
(
L
(
x, β

))
≃ n ln

(
n

ln(t) − n ln(x(1)) + (n − k) ln(β)

)
− n,

and ln(L(x, β)) is decreasing as β increasing.
Moreover, if β tends to infinity, then the ln(L(x, β)) tends to −∞. Therefore, the MLE of β does

not exist.

Note: One should note that we can obtain the MLE on the boundary of parameter space. When
β̃θ = x(1), the MLE of β is actually 1. As we assume that β is greater than 1, this estimator is not
meaningful. When θ̃ = x(1), the MLE of β is actually (t/xn

(1))
1/k. If β is larger than this, the likelihood

function cannot be defined.
For example, the plots of ln(L(x, β)) respect to β are given in Figure 1 for n = 5, k = 1, x(1) = 15

and t = 95454000.
Hence, for all parameters α, β and θ, the maximum likelihood estimator does not exist.

5. Least Squares Estimator

For the Pareto distribution in the presence of outliers, the reliability function is

R(x;α, β, θ) = 1 − F(x;α, β, θ) =
(
θ

x

)α (
bβα + b̄

)
. (5.1)

So we write

y = − ln(R(x)) = α ln(x) − α ln(θ) − ln
(
bβα + b̄

)
. (5.2)

By using an estimate of R(x), we obtain the LS estimator of α as

α̂ls =

∑n
i=1 yi ln(xi) − nȳln(x)∑n

i=1

[
ln(xi) − ln(x)

]2 , (5.3)

where ln(x) =
∑n

i=1 ln(xi)/n and ȳ =
∑n

i=1 yi/n.
Here, we can use this method to find the value of R(xi)

F̂
(
X(i)

)
= 1 − R̂

(
X(i)

)
, i = 1, 2, . . . , n, (5.4)

where

R̂
(
X(i)

)
=

ri

ri + 1
R̂

(
X(i−1)

)
, R̂

(
X(0)

)
= 1, (5.5)
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Figure 1

and ri is the reverse rank of the ith value of x and

F̂
(
X(i)

)
=

i
n + 1

. (5.6)

This estimate has the property that E(F̂(X(i))) = F(X(i)). For more details, see Hossain and Zimmer
(2000).

6. Mixture Method of Moment and Least Squares Estimators

Read (1981) proposed the method that avoids the difficulty of complicated equations. According to
Read (1981), the fourth replacement of some (but not all) of the equations in the system may make it
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more manageable. From Equation (5.3), we can obtain the estimator of α as

α̂mix =

∑n
i=1 yi ln(xi) − nȳln(x)∑n

i=1

[
ln(xi) − ln(x)

]2 . (6.1)

In addition, from the first and third equations in Equation (3.2), we have

β =
−

(
α2

(
b2 + b̄2

)
− m1m3

(
α2 − 1

))
+
√
∆

2bb̄α2
, (6.2)

where

∆ = α4
(
b4 + b̄4

)
+ m2

1m2
3

(
α2 − 1

)2 − 2α2m1m3

(
α2 − 1

) (
b2 + b̄2

)
− 2b2b̄2α4.

Now, if we substitute Equation (6.1) in Equation (6.2), we can get the mixture estimator of β.

β̂mix =
−α̂2

mix

(
b2 + b̄2

)
+ m1m3

(
α̂2

mix − 1
)
+
√
∆1

2bb̄α̂2
mix

, (6.3)

where

∆1 = α̂
4
mix

(
b4 + b̄4

)
+ m2

1m2
3

(
α̂2

mix − 1
)2 − 2α̂2

mixm1m3

(
α̂2

mix − 1
) (

b2 + b̄2
)
− 2b2b̄2α̂4

mix. (6.4)

Finally, by using the first equation in Equation (3.2), we find the mixture estimator of θ.

θ̂mix =
m1 (α̂mix − 1)

α̂mix

(
bβ̂mix + b̄

) . (6.5)

6.1. Asymptotically unbiasedness of the estimators

Now, we shall show that α̂mix, β̂mix and θ̂mix are asymptotically unbiased estimators.
We have

α̂mix = α̂ls.

Therefore, according to the least squares estimation

E (α̂mix) = α. (6.6)

Let T1 = 1/n
∑n

i=1 Xi, T2 = α̂mix and T3 = 1/n
∑n

i=1 1/Xi. For the mixture estimator of β, we can write
β̂mix as a function of T1, T2 and T3. Hence,

β̂mix = f (T1, T2,T3) =
−T 2

2

(
b2 + b̄2

)
+ T1T3

(
T 2

2 − 1
)
+
√
∆1

2bb̄T 2
2

, (6.7)

where

∆1 = T 4
2

(
b4 + b̄4

)
+ T 2

1 T 2
3

(
T 2

2 − 1
)2 − 2T 2

2 T1T3

(
T 2

2 − 1
) (

b2 + b̄2
)
− 2b2b̄2T 4

2 .
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Let λ1 = E(T1), λ2 = E(T2) and λ3 = E(T3). Expand the function f (T1,T2,T3) around (λ1, λ2, λ3) by
Taylor series as

β̂mix = f (λ1, λ2, λ3) + (T1 − λ1)
d f
dT1

∣∣∣∣∣
T1=λ1,T2=λ2,T3=λ3

+ (T2 − λ2)
d f
dT2

∣∣∣∣∣
T1=λ1,T2=λ2,T3=λ3

+ (T3 − λ3)
d f
dT3

∣∣∣∣∣
T1=λ1,T2=λ2,T3=λ3

+ O
(
n−1

)
. (6.8)

Hence, from Equations (6.7) and (6.8)

E
(
β̂mix

)
≃ f (λ1, λ2, λ3)

=
−λ2

2

(
b2 + b̄2

)
+ λ1λ3

(
λ2

2 − 1
)
+
√
∆2

2bb̄λ2
2

, (6.9)

where

∆2 = ∆1|T1=λ1,T2=λ2,T3=λ3 = λ
4
2

(
b4 + b̄4

)
+ λ2

1λ
2
3

(
λ2

2 − 1
)2 − 2λ2

2λ1λ3

(
λ2

2 − 1
) (

b2 + b̄2
)
− 2b2b̄2λ4

2.

From Equations (3.2) and (6.6), We have λ1 = αθ(bβ + b̄)/(α − 1), λ2 = α and λ3 = αθ
−1(bβ−1 + b̄)/(α + 1).

Therefore

∆2 = α
4
(
b4 + b̄4

)
+

αθ
(
bβ + b̄

)
α − 1


2 αθ−1

(
bβ−1 + b̄

)
α + 1


2 (
α2 − 1

)2

− 2α2

αθ
(
bβ + b̄

)
α − 1


αθ−1

(
bβ−1 + b̄

)
α + 1

 (α2 − 1
) (

b2 + b̄2
)
− 2b2b̄2α4

=
α4

β2

{
β2

(
b4 − 2b2b̄2 + b̄4

)
+

(
b2β + bb̄β2 + bb̄ + b̄2β

) [
b2β + bb̄β2 + bb̄ + b̄2β − 2

(
b2 + b̄2

)
β
]}
.

So by using some elementary algebra

∆2 =
α4b2b̄2

β2

(
β2 − 1

)2
.

Then

E
(
β̂mix

)
≃
−α2

(
b2 + b̄2

)
+

(
αθ(bβ+b̄)
α−1

) (
αθ−1(bβ−1+b̄)

α+1

) (
α2 − 1

)
+

√
α4b2b̄2

β2

(
β2 − 1

)2

2bb̄α2

=
α2bb̄

(
β + β−1

)
+ α2bb̄

β

(
β2 − 1

)
2bb̄α2

,

and

E
(
β̂mix

)
≃ β, as n→ ∞ & k → ∞. (6.10)

Now, for mixture estimator of θ, we have

θ̂mix = g (T1,T2,T4) =
T1 (T2 − 1)

T2

(
bT4 + b̄

) , (6.11)
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where T1 = 1/n
∑n

i=1 Xi, T2 = α̂mix and T4 = β̂mix.
By using Taylor series

θ̂mix = g(λ1, λ2, λ4) + (T1 − λ1)
dg
dT1

∣∣∣∣∣
T1=λ1,T2=λ2,T4=λ4

+ (T2 − λ2)
dg
dT2

∣∣∣∣∣
T1=λ1,T2=λ2,T4=λ4

+ (T4 − λ4)
dg
dT4

∣∣∣∣∣
T1=λ1,T2=λ2,T4=λ4

+ O
(
n−1

)
, (6.12)

where λ1 = E(T1), λ2 = E(T2) and λ4 = E(T4). Then, according to the previous procedure

E
(
θ̂mix

)
≃ g (λ1, λ2, λ4)

= lim
n,k→∞

αθ
α−1

(
bβ + b̄

)
(α − 1)

α
(
bβ + b̄

) ,

and

E
(
θ̂mix

)
≃ θ, as n→ ∞ & k → ∞. (6.13)

6.2. Asymptotic distribution of the estimators

In this subsection, we wish to show that the estimators are consistent. From the strong law of large
numbers, it is known that T1 = 1/n

∑n
i=1 Xi, T2 = α̂mix and T3 = 1/n

∑n
i=1 1/Xi converge almost

surely (as) to E(X), α and E(1/X), respectively. Also, from the central limit theorem and Lehmann
and Casella (1998, Theorem 8.21 in p.61), we readily observe that T1, T2 and T3 are asymptotically
normally distributed.

So

√
n


T1 − E(X)

T2 − E (α̂mix)

T3 − E
(

1
X

)
 ∼ N

(
0,Σ

)
, (6.14)

where

0 =

 0
0
0

 , Σ =

 σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 ,
and

σ11 = Var(T1), σ12 = σ21 = Cov(T1,T2), σ13 = σ31 = Cov(T1,T3),
σ22 = Var(T2), σ23 = σ32 = Cov(T2,T3), σ33 = Var(T3).

Now, we should find the covariance matrix. We have

σ11 = V(T1) = E(T1)2 − (E(T1))2.
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Then

E(T1)2 =
1
n2

 n∑
i=1

E
(
Xi

2
)
+

n∑
i, j

E
(
XiX j

)
=

1
n

E
(
X2

)
+

n − 1
n

E
(
XiX j

)
, i , j. (6.15)

In addition, we have

E
(
X2

)
=

α

α − 2
θ2

(
bβ2 + b̄

)
,

and we know that from Equations (1.1) and (1.2)

h(xi, x j) =
1

C(n, k)

[
C(n − 2, k − 2) f2(xi) f2(x j) +C(n − 2, k − 1)

{
f2(xi) f1(x j) + f1(xi) f2(x j)

}
+C(n − 2, k) f1(xi) f1(x j)

]
, i , j. (6.16)

So

E(XiX j) =
α2θ2

(α − 1)2n(n − 1)

[
k(k − 1)β2 + 2k(n − k)β + (n − k)(n − k − 1)

]
, i , j, (6.17)

and by using some elementary algebra

σ11 =
αθ2

(
bβ2 + b̄

)
n(α − 1)2(α − 2)

. (6.18)

By using Taylor series

σ12 = E(T1T2) − E(T1)E(T2)
≃ αE(T1) − αE(T1),

and

σ12 ≃ 0. (6.19)

Similarly

σ23 ≃ 0. (6.20)

Now, we use the same method as σ11 to obtain σ13.

σ13 = Cov(T1,T3) = E(T1T3) − E(T1)E(T3),

and

E(T1T3) =
1
n
+

n − 1
n

E
(
Xi

1
X j

)
, i , j.
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Therefore, by using Equation (6.16)

E
(
Xi

1
X j

)
=

α2

n(n − 1)(α2 − 1)

[
k(k − 1) + k(n − k)

(
β + β−1

)
+ (n − k)(n − k − 1)

]
, i , j, (6.21)

and after simplification

σ13 = −
1

n(α2 − 1)
. (6.22)

From the least squares estimation, we have

σ22 = Var (α̂mix) =
σ2∑n

i=1

[
ln(xi) − ln(x)

]2 , (6.23)

and an unbiased estimator of σ2 is

σ̃2 =

∑n
i=1 (yi − ȳ)2

n − 2

(
1 − r2

)
, (6.24)

where r is Pearson linear correlation coefficient between y and ln(x).
To obtain σ33 similarly as the previous, we have

σ33 = V(T3) = E(T3)2 − (E(T3))2.

So

E(T3)2 =
1
n

E
(

1
X2

)
+

n − 1
n

E
(

1
Xi

1
X j

)
, i , j, (6.25)

and

E(XiX j)−1 =
α2θ−2

n(n − 1)(α + 1)2

[
k(k − 1)β−2 + 2k(n − k)β−1 + (n − k)(n − k − 1)

]
, i , j. (6.26)

Therefore, by using some algebra

σ33 =
α
(
b + b̄β2

)
nβ2θ2(α + 1)2(α + 2)

. (6.27)

Now, we have

α̂mix = f1(T1,T2,T3) = T2, (6.28)

β̂mix = f2(T1,T2,T3) =
−T 2

2

(
b2 + b̄2

)
+ T1T3

(
T 2

2 − 1
)
+
√
∆1

2bb̄T 2
2

, (6.29)

where

∆1 = T 4
2

(
b4 + b̄4

)
+ T 2

1 T 2
3

(
T 2

2 − 1
)2 − 2T 2

2 T1T3

(
T 2

2 − 1
) (

b2 + b̄2
)
− 2b2b̄2T 4

2 ,
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and

θ̂mix = f3(T1, T2,T3) =
T1(T2 − 1)

T2

(
b f2(T1,T2,T3) + b̄

) . (6.30)

So by using Taylor series expansion and Lehmann and Casella (1998, Theorem 8.22 in p.61), we
obtain

√
n


α̂mix − α
β̂mix − β
θ̂mix − θ

 ∼ N
(
0,Σ1

)
, (6.31)

where Σ1 = BΣBT (BT is transpose of B) and

B =



d f1
dT1

d f1
dT2

d f1
dT3

d f2
dT1

d f2
dT2

d f2
dT3

d f3
dT1

d f3
dT2

d f3
dT3


T1=E(X),T2=E(α̂mix),T3=E( 1

X )

. (6.32)

From Equation (6.28), we have

d f1
dT1

∣∣∣∣∣
T1=E(X),T2=E(α̂mix),T3=E( 1

X )
= 0, (6.33)

d f1
dT2

∣∣∣∣∣
T1=E(X),T2=E(α̂mix),T3=E( 1

X )
= 1, (6.34)

and

d f1
dT3

∣∣∣∣∣
T1=E(X),T2=E(α̂mix),T3=E( 1

X )
= 0. (6.35)

By using Equation (6.29), we obtain

d f2
dT1
=

1
2bb̄T 2

2

[
T3

(
T 2

2 − 1
)
+

1
2
∆
− 1

2
1

d∆1

dT1

]
,

where

d∆1

dT1
= 2T1T 2

3

(
T 2

2 − 1
)2 − 2T 2

2 T3

(
T 2

2 − 1
) (

b2 + b̄2
)
.

Thus, with substituting T1 = E(X), T2 = α and T3 = E(1/X) and using some elementary algebra, we
find

d f2
dT1

∣∣∣∣∣
T1=E(X),T2=E(α̂mix),T3=E( 1

X )
=
β(α − 1)

(
b + b̄β

)
bb̄αθ

(
β2 − 1

) . (6.36)



830 Dixit, U.J., Jabbari Nooghabi, M.

In addition, we have

d f2
dT2
=

T1T3T−3
2

bb̄
−

T−3
2

bb̄
∆

1
2
1 +

T−2
2

4bb̄
∆
− 1

2
1

d∆1

dT2
, (6.37)

where

d∆1

dT2
= 4T2

3
(
b4 + b̄4

)
+ 4T 2

1 T 2
3

(
T 2

2 − T2

)
− 4T1T3T2

(
2T 2

2 − 1
) (

b2 + b̄2
)
− 8b2b̄2T 3

2 .

Therefore, after simplification, we obtain

d f2
dT2

∣∣∣∣∣
T1=E(X),T2=E(α̂mix),T3=E( 1

X )
=

2β
(
bβ + b̄

) (
b + b̄β

)
bb̄α

(
α2 − 1

) (
β2 − 1

) . (6.38)

Further,

d f2
dT3
=

T1T−2
2

(
T 2

2 − 1
)

2bb̄
+

T−2
2

4bb̄
∆
− 1

2
1

d∆1

dT3
, (6.39)

where

d∆1

dT3
= 2T 2

1

(
T 2

2 − 1
)2

T3 − 2T1T 2
2

(
T 2

2 − 1
) (

b2 + b̄2
)
.

Then, by using some elementary algebra

d f2
dT3

∣∣∣∣∣
T1=E(X),T2=E(α̂mix),T3=E( 1

X )
=

(α + 1)
(
bβ + b̄

)
β2θ

bb̄α
(
β2 − 1

) . (6.40)

From Equation (6.30), we find

d f3
dT1
=

T2

(
b f2(T1,T2,T3) + b̄

)
d

dT1
[T1(T2 − 1)] − T1(T2 − 1) d

dT1

[
T2

(
b f2(T1,T2,T3) + b̄

)]
T 2

2

(
b f2(T1,T2,T3) + b̄

)2 ,

and

d
dT1

[
T2

(
b f2(T1,T2,T3) + b̄

)]
= bT2

d
dT1

f2(T1,T2,T3).

Therefore, with replacing T1 = E(X), T2 = α and T3 = E(1/X) and using some algebra, we get

d f3
dT1

∣∣∣∣∣
T1=E(X),T2=E(α̂mix),T3=E( 1

X )
= − α − 1

b̄α
(
β2 − 1

) . (6.41)

In addition, we have

d f3
dT2
=

T2

(
b f2(T1, T2,T3) + b̄

)
d

dT2
[T1(T2 − 1)] − T1(T2 − 1) d

dT2

[
T2

(
b f2(T1,T2,T3) + b̄

)]
T 2

2

(
b f2(T1,T2,T3) + b̄

)2 , (6.42)
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and

d
dT2

[
T2

(
b f2(T1,T2,T3) + b̄

)]
= b f2(T1,T2,T3) + b̄ + bT2

d
dT2

f2(T1,T2,T3).

Therefore, after substitution and simplification, we obtain

d f3
dT2

∣∣∣∣∣
T1=E(X),T2=E(α̂mix),T3=E( 1

X )
=

[
b̄α

(
β2 − 1

)
− b̄

(
β2 + 1

)
− 2bβ

]
θ

b̄α
(
α2 − 1

) (
β2 − 1

) . (6.43)

Finally, we have

d f3
dT3
=

T2

(
b f2(T1,T2,T3) + b̄

)
d

dT3
[T1(T2 − 1)] − T1(T2 − 1) d

dT3

[
T2

(
b f2(T1,T2,T3) + b̄

)]
T 2

2

(
b f2(T1,T2,T3) + b̄

)2 , (6.44)

and

d
dT3

[
T2

(
b f2(T1,T2,T3) + b̄

)]
= bT2

d
dT3

f2(T1,T2,T3).

Then, by using some elementary algebra, we find

d f3
dT3

∣∣∣∣∣
T1=E(X),T2=E(α̂mix),T3=E( 1

X )
= − (α + 1)β2θ2

b̄α
(
β2 − 1

) . (6.45)

So by substituting Equations (6.33), (6.34), (6.35), (6.36), (6.38), (6.40), (6.41), (6.43) and (6.45) into
Equation (6.32), we obtain the matrix B and then the matrix Σ1. In addition, the determinant of matrix
Σ1, after using some elementary algebra and simplification is

det(Σ1) =

[
bb̄α2

(
β4 + 1

)
+ α2β2

(
b2 + b̄2 − 1

)
+ 4β2

]
β2θ2σ2

n2b2b̄2α4 (
α2 − 4

) (
β2 − 1

)2
[∑n

i=1 (ln(xi))2 − n
(
ln(x)

)2
] . (6.46)

It is appear that all elements of the matrix B are fixed when n → ∞ and k → ∞. In addition, we
can see that all elements of the matrix Σ tend to zero as n → ∞ and k → ∞. Then, the variance and
covariance of the mixture estimators of the parameters tend to zero when n→ ∞ and k → ∞.

Further, determinant of the matrix Σ1 tends to zero as n and k tend to∞.
Therefore, the mixture estimator of the parameters are asymptotically consistent and normally

distributed.

7. Comparison of Moment and Mixture Methods and an Example

In order to have some idea about efficiency, we perform sampling experiments using R software. Our
model has three parameters and we have calculated covariance matrix of the estimate α, β and θ.
Determinant of the covariance matrix is

det = Var (α̂)
[
Var

(
β̂
)

Var
(
θ̂
)
−

(
Cov

(
β̂, θ̂

))2
]
+ Var

(
β̂
) [

Var (α̂) Var
(
θ̂
)
−

(
Cov

(
α̂, θ̂

))2
]

+ Var
(
θ̂
) [

Var (α̂) Var
(
β̂
)
−

(
Cov

(
α̂, β̂

))2
]
. (7.1)
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Figure 2

We have generated a sample of size n = 6, 7, . . . , 30 from the Pareto distribution with k = 1, 2, 3,
α = 5, 10, β = 1.5, 2, 3 and θ = 0.5, 5, 10. We have given graphs based on one thousand independent
replications of each experiment (Figure 2, 3).

The graphs show that the mixture estimation it is more efficient than the moment estimation.
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Figure 3

Example 1. In an insurance company, one of services is medical insurance. Any claim may be
made by a passenger for compensating medical problems received in an accident. This compensation
is to be at least θ Rials since less than θ is not reasonable for them to claim for the problem. Most of
the passenger claims are almost near to θ Rials that represents a modal value of their claims; however,
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Table 1: The mixture estimators of the parameters for k = 1, 2, 3
k α̂mix β̂mix θ̂mix
1 3.1278 2.7138 84337.2
2 3.1278 2.8271 78625.8
3 3.1278 2.7924 74166.3

Table 2: The likelihood function corresponding to k, for k = 1, 2, 3
k lnL(x

¯
; α̂mix, β̂mix, θ̂mix)

1 −294.6088
2 −296.7135
3 −298.1447

the claims depend on factors such as type and nature of injury. The claim amounts vary according to
these factors. Therefore, it is observed that the passenger claims are β times higher than passengers
whose claims are near to the modal value. It is clear that the claims follow the Pareto distribution in
the presence of outliers with parameters α, β and θ, where α, β and θ are unknown and the number of
outliers (k) is unknown.

The claims data from the Iran Insurance company records for the year 2009 are given by drawing
a random sample of size 25 of the claim amounts.

280870, 110147, 100483, 108729, 142800
102108, 107852, 163073, 118722, 108948
117307, 180237, 115422, 123086, 113936
221617, 112211, 106790, 178104, 101561
104325, 110343, 112843, 131537, 138744

In the example, we know that the number of outliers k is unknown; subsequently, we use the
following method to estimate it. We calculate the mixture estimator for the parameters α, β and θ for
different values of k. Then, k can be selected by evaluating the likelihood function respect to k for
different values of k choosing the one that maximizes the corresponding likelihood.

The mixture estimators of the parameters for k = 1, 2, 3 are shown in Table 1. In addition, from
the likelihood function corresponding to k, lnL(x

¯
; α̂mix, β̂mix, θ̂mix) for k = 1, 2, 3 are shown in Table 2.

Finally, we see that the likelihood function respect to k is maximized for k = 1.
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