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Abstract

In this paper we present the prediction interval estimation method using 
bootstrap method for least squares support vector machine(LS-SVM) 
regression, which allows us to perform even nonlinear regression by 
constructing a linear regression function in a high dimensional feature 
space. The bootstrap method is applied to generate the bootstrap sample 
for estimation of the covariance of the regression parameters consisting of 
the optimal bias and Lagrange multipliers. Experimental results are then 
presented which indicate the performance of this algorithm.   

Keywords: Least Squares Support Vector Machine, Bootstrap, Lagrange 

multiplier.

1. Introductions

Support vector machine(SVM), originally introduced by Vapnik(1995, 1998), 

solves the weak point of neural network such as the existence of local minima in 

the area of statistical learning theory and structural risk minimization. SVM 

solutions are characterized by convex optimization problems. Despite of many 

successful application of SVM in classification and function estimation problem, 

SVM requires to solve a quadratic program(QP) problem. QP is to optimize a 

quadratic function over a polyhedron,  defined by  linear equations and/or 

inequalities, which is time memory expensive.

A modified version of SVM in a least squares sense has been proposed for 

classification in Suykens and Vanderwalle(1999). In LS-SVM concerning 
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classification problems, we have regression interpretations and direct links to work 

in classical statistics. In LS-SVM the solution is given by a linear system instead 

of a QP problem. Taking account of the fact that the computational complexity 

increases strongly with the number of training data, LS-SVM can be efficiently 

estimated using iterative methods. The fact that LS-SVM has explicit primal-dual 

formulations has a number of advantages. 

The problem of prediction interval estimation for SVM regression has been 

studied recently, Seok et al.(2002) presented a Bayesian approach to estimating the 

prediction intervals for SVM regression and showed SVM regression achieves 

better performances than the neural networks and the multivariate adaptive 

regression splines(MARS) in predicting intervals. In this paper we present how to 

estimate the prediction intervals using the bootstrap method for LS-SVM 

regression. The bootstrap method is a computer based method for assigning 

measures of accuracy to statistical estimates, which generates a large number of 

bootstrap samples by repeatedly resampling the original data set in random 

manner to provide informations on the distribution of the statistic of interest. A 

good introduction can be found in Efron and Tbshirani(1993). 

The rest of paper is organized as follows.  In Section 2 we give an overview of 

LS-SVM regression.  In Section 3 we  present the prediction interval estimation 

method of nonlinear regression by LS-SVM using bootstrap. In Section 4 we 

perform the numerical studies with simulated data sets. In Section 5 we give the 

remarks and conclusions. 

2. LS-SVM Regression
  

Let the training data set D  be denoted by { ( x i,y i)}
n
i=1
, with each input 

x i ∈ R
d  and  the output y i ∈ R . We consider the case of nonlinear 

regression. Then, we take the form 

f ( x )= w'φ( x )+b                        

where the term b  is a bias term. Here the feature mapping function 

φ(⋅) :  R d → R
df  maps the input space to the higher dimensional feature space 

where the dimension d f  is defined in an implicit way.

The optimization problem is defined  with a regularization parameter γ   as

                 Minimize   1
2
w' w  + 

γ
2 ∑

n

i= 1
e 2i                        (1)

over { ω , b , e  } subject to equality constraints

y i= w' φ( x i )+ b+e i , i=1,…,n.                                   
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The Lagrangian function can be constructed  as

L( w,b,e :α)=
1
2
w' w + 

γ
2 ∑

n

i=1
e 2i- ∑

n

i=1
α i ( w'φ( x i )+b+e i-y i )          (2)

where α i's are the Lagrange multipliers. The conditions for optimality are given by 

δL
δw
=0  → w= ∑

n

i=1
α iφ( x i )

δL
δb
=0  → ∑

n

i=1
α i=0

δL
δe i

=0  → α i=γ e i, i=1,…,n

δL
δe i

=0  → w' φ( x i )+ b+ e i-y i=0 , i=1,…,n,

with solution

                     [ ]0 1 '
1 Ω+γ - 1 I [ ]b α   =  [ ]0 y                      (3)

with y= (y 1 ,…,y n)', 1= (1,…,1)', α = (α 1,…,α n )',and Ω= {Ω kl}, 

where Ω kl= φ( x k )'φ( x l )=K( x k, x l ), k, l=1,…,n,  which are obtained 

from the application of Mercer's conditions(1909). Several choices of the kernel 

K(⋅,⋅)  are possible.

Solving the linear equation (3)  the optimal bias and Lagrange multipliers, b  

and α i's are obtained, then the optimal regression function for the given x  is 

obtained as 

                   f ( x )= ∑
n

i=1
α i K( x i, x ) + b                              (4) 

Note that in the nonlinear setting, the optimization problem corresponds to 

finding the flattest function in the feature space, not in the input space. In fact, 

SVM has strong advantage that SVM performs particularly well for the nonlinear 

regression model with several input variables. 

3. Prediction Interval Estimation 

Assume a nonlinear regression model can be expressed as 

y i= f ( x i )+ε i= H iθ + ε i, i=1,…,n ,                             

where H i=(1,K( x i, x 1 ),…,K( x i, x n )), θ= (b, α 1,…,α n )'   and ε i's 

are unobservable random errors which are independent and identically distributed 

with zero mean and finite variance σ
2 . Here b  and α i's are the bias and the 
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Lagrange multipliers defined in the equation (2), and K(⋅.⋅)  is a kernel. θ  is 

estimated from the training data set { ( x i,y i ) }
n
i=1
  by LS-SVM regression, 

which is denoted by θ . The residuals are obtained by 

ε i = y i- H i θ , i=1,…,n,  which leads the estimate of σ
2  as 

σ
2
=
1
n ∑

n

i= 1
ε i

2
  .

The Bootstrap estimate of the covariance of θ  can obtained as follows:

  i) Bootstrap data set, { ( x i
*
,y *i) }

n
i=1
 , is drawn with replacement from 

    training data set { ( x i,y i ) }
n
i=1
 .

  ii) θ
*
 is estimated from the bootstrap data set , { ( x i

*
,y *i) }

n
i=1
,  

    by LS-SVM regression.

  iii) i) and ii) are repeated B of times to obtain θ
* 1
,…, θ

* B
.

  iv) COV ( θ ) =
1

B-1 ∑
B

b=1
( θ

* b

- θ
*

)( θ
* b

- θ
*

)'  ,

      where θ
*
=
1
B ∑

B

b=1
θ
* b
 .

Then (1- η)100 % prediction limits for Y(x new)  can be obtained as

              Y ( x new) ± z η/2 H new COV ( θ ) H new'+ σ
2
            (5)

where Y ( x new) = H new θ , H new= (1, K( x new, x 1 ),…,K( x new, x n ) ) .

4. Numerical Studies

We illustrate the performance of the proposed estimation method through one 

simulated example. The simulated data set consists of 200 of x  generated from a 

uniform distribution U(0,1)  and 200 of y  generated from a normal distribution 

N( 0.5+0.4× sin (2πx),0.01) . The first 100 of data are used for the training data 

set to estimate θ  and the rest of data are used for test data set to estimate the 

prediction intervals.

For the estimation of θ= (b,α 1,…,α 100)'  the training data set 

{ ( x i,y i) }
100
i=1
, and the radial basis function(RBF) kernel are used, where the 

RBF kernel is defined as
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K( x 1 , x 2 )=exp (-
1

2σ 2
( x 1- x 2 )' ( x 1- x 2 ) ).

The values of γ  and σ  in RBF kernel are chosen as 500 and 0.2, respectively, 

by the cross validation of training data set. The 500 bootstrap samples are drawn 

to estimate the covariance of θ  .

With the input data of the test data set {x t i}
100
i=1
, 95% prediction intervals for 

each x t i, i= 1,…,100 , are obtained by the equation (5). The figure 1 shows  

the predicted target values, Y ( x t i ), and 95% prediction intervals of the target 

valuesY ( x t i)  by LS-SVM using bootstrap. 

Using that the distribution of target values Y ( x t i )  is known as

N( 0.5+0.4× sin (2πx t i ),0.01)   95% prediction intervals of the target values can 

be obtained as 0.5+0.4× sin (2 πx t i )±0.196 . Figure 2 shows the  mean target 

values and 95% prediction intervals of the target values Y ( x t i )  by  the known 

distribution of target values. By comparing two figures we can see that the 

proposed estimation provides reasonable estimations of the predicted target values 

and the corresponding prediction intervals.                   

       

Figure 1. 95 % Prediction intervals for the test data set by 

                       LS-SVM using bootstrap
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Figure 2. 95 % Prediction intervals for the test data set by 

                       the known distribution of target values

5. Remarks and Conclusions

Through the example we showed that the proposed algorithm derives the 

satisfying results, which is attractive approaches to modelling the training data set 

for the prediction intervals estimation of test data set. In particular, we can use 

this algorithm successfully even for a linear regression model by using identity 

feature mapping function, that is, φ( x ) = x   which implies the linear kernel such 

that K( x 1 , x 2 ) = x 1 ' x 2  . 

In this paper we proposed the prediction interval estimation for LS-SVM 

regression using the bootstrap method when error terms are independent on the 

input data. In future work, we intend to devise the prediction interval estimation 

for standard SVM when error terms are dependent on the input data using other 

efficient resampling methods.
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