• Title/Summary/Keyword: Learning Control Algorithm

Search Result 947, Processing Time 0.028 seconds

A Neural Speech Processing Algorithm for Multielectrode Cochlear Implant System (신경회로망을 이용한 다중 전극 와우각 이식 시스템용 음성처리 알고리즘)

  • Choi, Jin-Young;Cho, Jin-Ho;Lee, Kuhn-Il
    • Journal of Biomedical Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.83-88
    • /
    • 1990
  • A New speech processing algorithm using neural networks is proposed. We transform input data into frequency domain and process them by neural networks of 22 output neurons which have Bark scale on the ground that the Bark scale is similiar with that of the characteristics of human cochlea. An utilized neural network is multilayer perceptron, and the characteristics of cochlea have it trained by error back propagation learning algorithm. The trained neural networks suffices functions of human cochlea including the effects of automatic gain control, compression and equalization. Simulation results show that the proposed speech processing algorithm has good performance in automatic gain control, compression and equalization.

  • PDF

Development of a Modified Random Signal-based Learning using Simulated Annealing

  • Han, Chang-Wook;Lee, Yeunghak
    • Journal of Multimedia Information System
    • /
    • v.2 no.1
    • /
    • pp.179-186
    • /
    • 2015
  • This paper describes the application of a simulated annealing to a random signal-based learning. The simulated annealing is used to generate the reinforcement signal which is used in the random signal-based learning. Random signal-based learning is similar to the reinforcement learning of neural network. It is poor at hill-climbing, whereas simulated annealing has an ability of probabilistic hill-climbing. Therefore, hybridizing a random signal-based learning with the simulated annealing can produce better performance than before. The validity of the proposed algorithm is confirmed by applying it to two different examples. One is finding the minimum of the nonlinear function. And the other is the optimization of fuzzy control rules using inverted pendulum.

Labeling Q-Learning for Maze Problems with Partially Observable States

  • Lee, Hae-Yeon;Hiroyuki Kamaya;Kenich Abe
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.489-489
    • /
    • 2000
  • Recently, Reinforcement Learning(RL) methods have been used far teaming problems in Partially Observable Markov Decision Process(POMDP) environments. Conventional RL-methods, however, have limited applicability to POMDP To overcome the partial observability, several algorithms were proposed [5], [7]. The aim of this paper is to extend our previous algorithm for POMDP, called Labeling Q-learning(LQ-learning), which reinforces incomplete information of perception with labeling. Namely, in the LQ-learning, the agent percepts the current states by pair of observation and its label, and the agent can distinguish states, which look as same, more exactly. Labeling is carried out by a hash-like function, which we call Labeling Function(LF). Numerous labeling functions can be considered, but in this paper, we will introduce several labeling functions based on only 2 or 3 immediate past sequential observations. We introduce the basic idea of LQ-learning briefly, apply it to maze problems, simple POMDP environments, and show its availability with empirical results, look better than conventional RL algorithms.

  • PDF

Reward Shaping for a Reinforcement Learning Method-Based Navigation Framework

  • Roland, Cubahiro;Choi, Donggyu;Jang, Jongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.9-11
    • /
    • 2022
  • Applying Reinforcement Learning in everyday applications and varied environments has proved the potential of the of the field and revealed pitfalls along the way. In robotics, a learning agent takes over gradually the control of a robot by abstracting the navigation model of the robot with its inputs and outputs, thus reducing the human intervention. The challenge for the agent is how to implement a feedback function that facilitates the learning process of an MDP problem in an environment while reducing the time of convergence for the method. In this paper we will implement a reward shaping system avoiding sparse rewards which gives fewer data for the learning agent in a ROS environment. Reward shaping prioritizes behaviours that brings the robot closer to the goal by giving intermediate rewards and helps the algorithm converge quickly. We will use a pseudocode implementation as an illustration of the method.

  • PDF

Recurrent Neural Network with Backpropagation Through Time Learning Algorithm for Arabic Phoneme Recognition

  • Ismail, Saliza;Ahmad, Abdul Manan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1033-1036
    • /
    • 2004
  • The study on speech recognition and understanding has been done for many years. In this paper, we propose a new type of recurrent neural network architecture for speech recognition, in which each output unit is connected to itself and is also fully connected to other output units and all hidden units [1]. Besides that, we also proposed the new architecture and the learning algorithm of recurrent neural network such as Backpropagation Through Time (BPTT, which well-suited. The aim of the study was to observe the difference of Arabic's alphabet like "alif" until "ya". The purpose of this research is to upgrade the people's knowledge and understanding on Arabic's alphabet or word by using Recurrent Neural Network (RNN) and Backpropagation Through Time (BPTT) learning algorithm. 4 speakers (a mixture of male and female) are trained in quiet environment. Neural network is well-known as a technique that has the ability to classified nonlinear problem. Today, lots of researches have been done in applying Neural Network towards the solution of speech recognition [2] such as Arabic. The Arabic language offers a number of challenges for speech recognition [3]. Even through positive results have been obtained from the continuous study, research on minimizing the error rate is still gaining lots attention. This research utilizes Recurrent Neural Network, one of Neural Network technique to observe the difference of alphabet "alif" until "ya".

  • PDF

Proactive Operational Method for the Transfer Robot of FMC (FMC 반송용 로봇의 선견형 운영방법)

  • Yoon, Jung-Ik;Um, In-Sup;Lee, Hong-Chul
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.4
    • /
    • pp.249-257
    • /
    • 2008
  • This paper shows the Applied Q-learning Algorithm which supports selecting the waiting position of a robot and the part serviced next in the Flexible Manufacturing Cell (FMC) that consists of one robot and various types of facilities. To verify the performance of the suggested algorithm, we design the general FMC made up of single transfer robot and multiple machines with a simulation method, and then compare the output with other control methods. As a result of the analysis, the algorithm we use improve the average processing time and total throughputs as well by increasing robot utilization, reversely, by decreasing robot waiting time. Furthermore, because of ease of use compared with other complex ways and its adoptability to real world, we expect that this method contribute to advance total FMC efficiency as well.

  • PDF

Q Learning MDP Approach to Mitigate Jamming Attack Using Stochastic Game Theory Modelling With WQLA in Cognitive Radio Networks

  • Vimal, S.;Robinson, Y. Harold;Kaliappan, M.;Pasupathi, Subbulakshmi;Suresh, A.
    • Journal of Platform Technology
    • /
    • v.9 no.1
    • /
    • pp.3-14
    • /
    • 2021
  • Cognitive Radio network (CR) is a promising paradigm that helps the unlicensed user (Secondary User) to analyse the spectrum and coordinate the spectrum access to support the creation of common control channel (CCC). The cooperation of secondary users and broadcasting between them is done through transmitting messages in CCC. In case, if the control channels may get jammed and it may directly degrade the network's performance and under such scenario jammers will devastate the control channels. Hopping sequences may be one of the predominant approaches and it may be used to fight against this problem to confront jammer. The jamming attack can be alleviated using one of the game modelling approach and in this proposed scheme stochastic games has been analysed with more single users to provide the flexible control channels against intrusive attacks by mentioning the states of each player, strategies ,actions and players reward. The proposed work uses a modern player action and better strategic view on game theoretic modelling is stochastic game theory has been taken in to consideration and applied to prevent the jamming attack in CR network. The selection of decision is based on Q learning approach to mitigate the jamming nodes using the optimal MDP decision process

The Intelligent Control System for Biped Robot Using Hierarchical Mixture of Experts (계층적 모듈라 신경망을 이용한 이동로봇 지능제어기)

  • Choi Woo-Kyung;Ha Sang-Hyung;Kim Seong-Joo;Kim Yong-Taek;Jeon Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.389-395
    • /
    • 2006
  • This paper proposes the controller for biped robot using intelligent control algorithm. In order to simplify the complexity of biped robot control, manipulator of biped robot is divided into four modules. These modules are controlled by intelligent algorithm with Hierarchical Mixture of Experts(HME) using neural network. Also neural network having direct control method learns the inverse dynamics of biped robot. The HME, which is a network of tree structure, reallocates the input domain for the output by learning pattern of input and output. In this paper, as a result of learning HME repeatedly with EM algorithm, the controller for biped robot operating safety walking is designed by modelling dynamics of biped robot and generating virtual error of HME.

Implementation of Smart Ventilation Control System using IoT and Machine Learning (IoT와 기계학습을 이용한 스마트 환풍기 제어 시스템 구현)

  • Lee, Hui-Eun;Choi, Jin-ku
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.283-287
    • /
    • 2020
  • In this paper, we implemented a control for ventilation system based on IoT. It can on/off of system and monitoring current status through the smartphone app. We applied linear regression, one of machine learning algorithm. It autonomously collects data about temperature, humidity in home and works diagnosing system status. Using this proposed control method, the energy efficiency can be improved. It is expected to be used in energy efficiency and convenience.

CMAC Learning Controller Implementation With Multiple Sampling Rate: An Inverted Pendulum Example (다중 샘플링 타임을 갖는 CMAC 학습 제어기 실현: 역진자 제어)

  • Lee, Byoung-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.279-285
    • /
    • 2007
  • The objective of the research is two fold. The first is to design and propose a stable and robust learning control algorithm. The controller is CMAC Learning Controller which consists of a model-based controller, such as LQR or PID, as a reference control and a CMAC. The second objective is to implement a reference control and CMAC at two different sampling rates. Generally, a conventional controller is designed based on a mathematical plant model. However, increasing complexity of the plant and accuracy requirement on mathematical models nearly prohibits the application of the conventional controller design approach. To avoid inherent complexity and unavoidable uncertainty in modeling, biology mimetic methods have been developed. One of such attempts is Cerebellar Model Articulation Computer(CMAC) developed by Albus. CMAC has two main disadvantages. The first disadvantage of CMAC is increasing memory requirement with increasing number of input variables and with increasing accuracy demand. The memory needs can be solved with cheap memories due to recent development of new memory technology. The second disadvantage is a demand for processing powers which could be an obstacle especially when CMAC should be implemented in real-time. To overcome the disadvantages of CMAC, we propose CMAC learning controller with multiple sampling rates. With this approach a conventional controller which is a reference to CMAC at high enough sampling rate but CMAC runs at the processor's unoccupied time. To show efficiency of the proposed method, an inverted pendulum controller is designed and implemented. We also demonstrate it's possibility as an industrial control solution and robustness against a modeling uncertainty.