Reward Shaping for a Reinforcement Learning Method-Based Navigation Framework

  • Published : 2022.10.03

Abstract

Applying Reinforcement Learning in everyday applications and varied environments has proved the potential of the of the field and revealed pitfalls along the way. In robotics, a learning agent takes over gradually the control of a robot by abstracting the navigation model of the robot with its inputs and outputs, thus reducing the human intervention. The challenge for the agent is how to implement a feedback function that facilitates the learning process of an MDP problem in an environment while reducing the time of convergence for the method. In this paper we will implement a reward shaping system avoiding sparse rewards which gives fewer data for the learning agent in a ROS environment. Reward shaping prioritizes behaviours that brings the robot closer to the goal by giving intermediate rewards and helps the algorithm converge quickly. We will use a pseudocode implementation as an illustration of the method.

Keywords

Acknowledgement

This research was supported by the BB21plus funded by Busan Metropolitan City and Busan Institute for Talent & Lifelong Education (BIT). And this research was supported by the MSIT (Ministry of Science and ICT), Korea, under the Grand Information Technology Research Center support program (IITP-2022-2020-0-01791) supervised by the IITP (Institute for Information & communications Technology Planning & Evaluation).