• Title/Summary/Keyword: Learning Bayesian Networks

Search Result 61, Processing Time 0.022 seconds

Efficient Learning of Bayesian Networks using Entropy (효율적인 베이지안망 학습을 위한 엔트로피 적용)

  • Heo, Go-Eun;Jung, Yong-Gyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.3
    • /
    • pp.31-36
    • /
    • 2009
  • Bayesian networks are known as the best tools to express and predict the domain knowledge with uncertain environments. However, bayesian learning could be too difficult to do effective and reliable searching. To solve the problems of overtime demand, the nodes should be arranged orderly, so that effective structural learning can be possible. This paper suggests the classification learning model to reduce the errors in the independent condition, in which a lot of variables exist and data can increase the reliability by calculating the each entropy of probabilities depending on each circumstances. Also efficient learning models are suggested to decide the order of nodes, that has lowest entropy by calculating the numerical values of entropy of each node in K2 algorithm. Consequently the model of the most suitably settled Bayesian networks could be constructed as quickly as possible.

  • PDF

Multi-Sensor Signal based Situation Recognition with Bayesian Networks

  • Kim, Jin-Pyung;Jang, Gyu-Jin;Jung, Jae-Young;Kim, Moon-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1051-1059
    • /
    • 2014
  • In this paper, we propose an intelligent situation recognition model by collecting and analyzing multiple sensor signals. Multiple sensor signals are collected for fixed time window. A training set of collected sensor data for each situation is provided to K2-learning algorithm to generate Bayesian networks representing causal relationship between sensors for the situation. Statistical characteristics of sensor values and topological characteristics of generated graphs are learned for each situation. A neural network is designed to classify the current situation based on the extracted features from collected multiple sensor values. The proposed method is implemented and tested with UCI machine learning repository data.

On-line Diagnosis System with Learning Bayesian Networks for fsEBPR

  • Cheon, Seong-Pyo;Kim, Sung-Shin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.279-284
    • /
    • 2007
  • Nowadays, due to development of automatic control devices and various sensors, one operator can freely handle several remote plants and processes. Automatic diagnosis and warning systems have been adopted in various fields, in order to prepare an operator's absence for patrolling plants. In this paper, a Bayesian networks based on-line diagnosis system is proposed for a wastewater treatment process. Especially, the suggested system is included learning structure, which can continuosly update conditional probabilities in the networks. To evaluate performance of proposed model, we made a lab-scale five-stage step-feed enhanced biological phosphorous removal process plant and applied on-line diagnosis system to this plant in the summer.

Parameter Learning of Dynamic Bayesian Networks using Constrained Least Square Estimation and Steepest Descent Algorithm (제약조건을 갖는 최소자승 추정기법과 최급강하 알고리즘을 이용한 동적 베이시안 네트워크의 파라미터 학습기법)

  • Cho, Hyun-Cheol;Lee, Kwon-Soon;Koo, Kyung-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.164-171
    • /
    • 2009
  • This paper presents new learning algorithm of dynamic Bayesian networks (DBN) by means of constrained least square (LS) estimation algorithm and gradient descent method. First, we propose constrained LS based parameter estimation for a Markov chain (MC) model given observation data sets. Next, a gradient descent optimization is utilized for online estimation of a hidden Markov model (HMM), which is bi-linearly constructed by adding an observation variable to a MC model. We achieve numerical simulations to prove its reliability and superiority in which a series of non stationary random signal is applied for the DBN models respectively.

Structure Learning in Bayesian Networks Using Asexual Reproduction Optimization

  • Khanteymoori, Ali Reza;Menhaj, Mohammad Bagher;Homayounpour, Mohammad Mehdi
    • ETRI Journal
    • /
    • v.33 no.1
    • /
    • pp.39-49
    • /
    • 2011
  • A new structure learning approach for Bayesian networks based on asexual reproduction optimization (ARO) is proposed in this paper. ARO can be considered an evolutionary-based algorithm that mathematically models the budding mechanism of asexual reproduction. In ARO, a parent produces a bud through a reproduction operator; thereafter, the parent and its bud compete to survive according to a performance index obtained from the underlying objective function of the optimization problem: This leads to the fitter individual. The convergence measure of ARO is analyzed. The proposed method is applied to real-world and benchmark applications, while its effectiveness is demonstrated through computer simulations. Results of simulations show that ARO outperforms genetic algorithm (GA) because ARO results in a good structure and fast convergence rate in comparison with GA.

Bayesian Learning for Self Organizing Maps (자기조직화 지도를 위한 베이지안 학습)

  • 전성해;전홍석;황진수
    • The Korean Journal of Applied Statistics
    • /
    • v.15 no.2
    • /
    • pp.251-267
    • /
    • 2002
  • Self Organizing Maps(SOM) by Kohonen is very fast algorithm in neural networks. But it doesn't show sure rules of training results. In this paper, we introduce to Bayesian Learning for Self Organizing Maps(BLSOM) which combines self organizing maps with Bayesian learning. So it supports explanatory power of models and improves prediction. BLSOM has global optima anywhere but SOM has not. This is proved by experiment in this paper.

Learning Predictive Models of Memory Landmarks based on Attributed Bayesian Networks Using Mobile Context Log (모바일 컨텍스트 로그를 사용한 속성별 베이지안 네트워크 기반의 랜드마크 예측 모델 학습)

  • Lee, Byung-Gil;Lim, Sung-Soo;Cho, Sung-Bae
    • Korean Journal of Cognitive Science
    • /
    • v.20 no.4
    • /
    • pp.535-554
    • /
    • 2009
  • Information collected on mobile devices might be utilized to support user's memory, but it is difficult to effectively retrieve them because of the enormous amount of information. In order to organize information as an episodic approach that mimics human memory for the effective search, it is required to detect important event like landmarks. For providing new services with users, in this paper, we propose the prediction model to find landmarks automatically from various context log information based on attributed Bayesian networks. The data are divided into daily and weekly ones, and are categorized into attributes according to the source, to learn the Bayesian networks for the improvement of landmark prediction. The experiments on the Nokia log data showed that the Bayesian method outperforms SVMs, and the proposed attributed Bayesian networks are superior to the Bayesian networks modelled daily and weekly.

  • PDF

A Method for Microarray Data Analysis based on Bayesian Networks using an Efficient Structural learning Algorithm and Data Dimensionality Reduction (효율적 구조 학습 알고리즘과 데이타 차원축소를 통한 베이지안망 기반의 마이크로어레이 데이타 분석법)

  • 황규백;장정호;장병탁
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.11
    • /
    • pp.775-784
    • /
    • 2002
  • Microarray data, obtained from DNA chip technologies, is the measurement of the expression level of thousands of genes in cells or tissues. It is used for gene function prediction or cancer diagnosis based on gene expression patterns. Among diverse methods for data analysis, the Bayesian network represents the relationships among data attributes in the form of a graph structure. This property enables us to discover various relations among genes and the characteristics of the tissue (e.g., the cancer type) through microarray data analysis. However, most of the present microarray data sets are so sparse that it is difficult to apply general analysis methods, including Bayesian networks, directly. In this paper, we harness an efficient structural learning algorithm and data dimensionality reduction in order to analyze microarray data using Bayesian networks. The proposed method was applied to the analysis of real microarray data, i.e., the NC160 data set. And its usefulness was evaluated based on the accuracy of the teamed Bayesian networks on representing the known biological facts.

A Matrix-Based Genetic Algorithm for Structure Learning of Bayesian Networks

  • Ko, Song;Kim, Dae-Won;Kang, Bo-Yeong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.3
    • /
    • pp.135-142
    • /
    • 2011
  • Unlike using the sequence-based representation for a chromosome in previous genetic algorithms for Bayesian structure learning, we proposed a matrix representation-based genetic algorithm. Since a good chromosome representation helps us to develop efficient genetic operators that maintain a functional link between parents and their offspring, we represent a chromosome as a matrix that is a general and intuitive data structure for a directed acyclic graph(DAG), Bayesian network structure. This matrix-based genetic algorithm enables us to develop genetic operators more efficient for structuring Bayesian network: a probability matrix and a transpose-based mutation operator to inherit a structure with the correct edge direction and enhance the diversity of the offspring. To show the outstanding performance of the proposed method, we analyzed the performance between two well-known genetic algorithms and the proposed method using two Bayesian network scoring measures.

Parallel Bayesian Network Learning For Inferring Gene Regulatory Networks

  • Kim, Young-Hoon;Lee, Do-Heon
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.202-205
    • /
    • 2005
  • Cell phenotypes are determined by the concerted activity of thousands of genes and their products. This activity is coordinated by a complex network that regulates the expression of genes. Understanding this organization is crucial to elucidate cellular activities, and many researches have tried to construct gene regulatory networks from mRNA expression data which are nowadays the most available and have a lot of information for cellular processes. Several computational tools, such as Boolean network, Qualitative network, Bayesian network, and so on, have been applied to infer these networks. Among them, Bayesian networks that we chose as the inference tool have been often used in this field recently due to their well-established theoretical foundation and statistical robustness. However, the relative insufficiency of experiments with respect to the number of genes leads to many false positive inferences. To alleviate this problem, we had developed the algorithm of MONET(MOdularized NETwork learning), which is a new method for inferring modularized gene networks by utilizing two complementary sources of information: biological annotations and gene expression. Afterward, we have packaged and improved MONET by combining dispersed functional blocks, extending species which can be inputted in this system, reducing the time complexities by improving algorithms, and simplifying input/output formats and parameters so that it can be utilized in actual fields. In this paper, we present the architecture of MONET system that we have improved.

  • PDF