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Multi-Sensor Signal based Situation Recognition 
with Bayesian Networks 

 
 

Jin-Pyung Kim*, Gyu-Jin Jang*, Jae-Young Jung** and Moon-Hyun Kim† 
 

Abstract – In this paper, we propose an intelligent situation recognition model by collecting and 
analyzing multiple sensor signals. Multiple sensor signals are collected for fixed time window. A 
training set of collected sensor data for each situation is provided to K2-learning algorithm to generate 
Bayesian networks representing causal relationship between sensors for the situation. Statistical 
characteristics of sensor values and topological characteristics of generated graphs are learned for each 
situation. A neural network is designed to classify the current situation based on the extracted features 
from collected multiple sensor values. The proposed method is implemented and tested with UCI 
machine learning repository data. 
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1. Introduction 
 
In recent years, significant attention has focused on 

multiple sensor data fusion for context-aware and activity 
recognition applications. Data fusion techniques combine 
data from multiple sensors and related information to 
achieve more specific inferences than could be achieved by 
using a single, independent sensor [1]. As a result, in many 
applications, one can use more and more devices in the 
data fusion process. Furthermore, pushing the limit of 
hardware technologies is often hard and expensive for a 
given an application.  Multi-sensor signal systems fuse the 
data measured and processed from many inexpensive 
devices [2]. 

Collecting data from different measurement devices has 
additional relationales. In many cases, systems built from a 
few but very high performance devices can be less robust 
than systems that use a large number of inexpensive 
devices and appropriate algorithms. Moreover, in some 
applications, such as sensor networks using multiple 
sensors can also provide users with crucial spatiotemporal 
information to exploit that one high performance 
measurement device alone cannot produce. In this context, 
multiple sensor signal algorithms and systems need to be 
developed to efficiently exploit a large amount of data 
collected using multiple sensors [5, 6]. In addition, faithful 
analysis of these multiple sensor signal algorithms and 
systems is also necessary to control the quality and cost of 
multiple sensor system.  

 
There are approaches for situation recognition that equip 

the objects with Radio Frequency Identification (RFID) 
sensors. Buettner [7] evaluate RFID sensor networks for 
activity recognition, they prototyped a system that gathers 
object-use data in an apartment from WISPs (Wireless 
Identification and Sensing Platforms) and then infers daily 
activities with a simple Hidden Markov Model (HMM). 
Fused data from multiple sensors provides several 
advantages over data from a single sensor. First, if several 
identical sensors are used (e.g., identical radars tracking a 
moving object), combining the observations will result in 
an improved estimate of the target situation (position and 
velocity). A statistical advantage is gained by adding the N 
independent observations assuming the data are combined 
in an optimal manner. This same result could also be 
obtained by combining N observations from an individual 
sensor. A second advantage involves using the relative 
placement or motion of multiple sensors to improve the 
observation process. A third advantage gained by using 
multiple sensors is improved observability. Broadening the 
baseline of physical observables can result in significant 
improvements. A final advantage is accuracy improvement 
of recognizing situation by using a pattern extracted from 
multiple sensor signals [1].  

In this paper, we propose intelligent situation recognition 
model from multiple sensor values. This paper has 
following contributions in multiple sensors based situation 
recognition studies. First, it shows new machine learning 
method for multiple sensor based recognition. The 
proposed learning method transforms collected multiple 
data to a graph, specifically a Bayesian network, and 
extracts common structural features from generated graphs 
for each situation. Second, it presents a new recognition 
method that (I) describes current situation as Bayesian 
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network, (II) extracts structural features of generated 
Bayesian network and numerical features of nodes in 
Bayesian network to use them as situation description 
features and (III) propose a neural network consisting of 
input nodes which are grouped according to structural 
features of context networks. Each group of nodes 
performs merging of multiple sensor signals, since each 
input node represents an extracted value from a sensor 
signal.  

In chapter 2, we present the proposed system. In chapter 
3, we show experimental result by using robot failure data 
in UCI repository. Conclusion follows in chapter 4. 

 
 

2. Multi-Sensor based Situation Recognition 
 
The proposed approach consists of structure learning and 

class classification stage. Fig. 1 illustrates our situation 
recognition system. The Structure-Learning Stage performs 
i)quantization of failure data set by preprocessing part and 
ii) representing the current situation as a graph by analysis 
of multiple sensor signals, iii) extracting structure features 
from graph. The graph is a Bayesian network which is 
generated by using K2-algorithm from sampled multiple 
sensor data during a time window. The Bayesian network 
generalizes causal relationships between multiple sensor 
signals collected during non-overlapped time window. The 
graph is called as context-network. The structure feature 
expresses topological characteristics and numerical 
properties of nodes of context-network. The Classification 
Stage classifies situations as one of 4 classes based on the 
extracted structure features using neural network. 

The recognition system works in 2 phases. The first 
phase is training phase, which generates context-networks 
from training set of each class. For each class, structural 
features are defined from generated context networks of 
this class. The structural features are used to design input 
nodes of the neural network. Structure-Learning Stage 
generates Context-Network (for four classes) to generalize 
causal relationships between multiple sensor signals 
collected during non-overlapped time window. The 
generated context-networks are analyzed to extract features 
for recognition of current situations. The second phase is 
classification phase, which learn and classify 4 classes 

(Normal, collision, fr_collision, obstruction) by extracted 
features. The extracted features are structural feature of 
context-network and numerical feature of context-network. 

We define prototypical situations to build our model as 4 
situations which frequently occur during the robot grasping 
activity. The number of situations can be easily extended 
without any theoretical modification of the proposed model.  

 
2.1 Structure learning stage 

 
Bayesian networks are probabilistic graphical models 

that provide interpretability of the explored domain by 
extracting and causal relationships between variables 
(sensors) representing the domain. The models readily 
combine patterns acquired from the data [3]. Generally, 
there are approaches of constraint-based and score-based, 
genetic methods for learning a Bayesian network structure 
[4]. We used K2-algorithm of the score-based structure 
learning algorithm to extract structural relationship between 
multiple sensor signals. The K2-algorithm proposed by 
Cooper and Herskovits [5, 8] is the most well-known 
Bayesian structure learning algorithms. The algorithm 
generates the Bayesian graph G with joint probability and 
Bayesian metric score. It is called K2-metric and is the 
most well-known Bayesian network evaluation function. 
K2-metric is expressed in the equation (1). 
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Maximizing P(G,D) searches for the most probable 

Bayesian network structure G given a database D. P(G) is 
the structure prior probability that is constant for each G. In 
equation (1), ri represents the number of possible values of 
the node xi. And qi is the list of all possible instantiations of 
the combination. We let πi as set of parents of node xi. 
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Nijk is the number of cases in D in which the attribute xi 

is instantiated with its k-th value, and the parents of xi in πi 
are instantiated with the j-th instantiation in qi. Nij is the 
number of instances in the database in which the parents of 
xi in πi are instantiated with the j-th instantiation in qi [5, 8].  

The K2-algorithm starts by assuming that a node has no 
parents, after which, in every step it adds incrementally the 
parent whose addition mostly increases the probability of 
the resulting structure. K2-algorithm stops adding parents 
to the nodes when the addition of a single parent cannot 
increase the probability of the network given the data [8]. 
K2-algorithm statistically analyzes data, and data elements 
are representative of a Bayesian graph. Bayesian graph is a 
directed acyclic graph where directions of edges represent 
dependencies between nodes. Therefore, the relationship Fig. 1. Situation recognition system 
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between the node and the node is represented by the 
dependence of the elements of the data expressed. 
Structure Learning Stage obtains the graphs for each of the 
four classes through the K2-algorithm from training data. 
These learned graphs are named as context-network G, and 
used to extract distinctive path patterns which are used as 
input features for each class recognition [11]. 

Typical context-networks for each class are shown in Fig. 
2. Each context-network is directed acyclic graph, where 
each node represents a sensor signals (Fx, Fy, Fz, Tx, Ty, 
Tz). It is implemented as an adjacency matrix which 
represents a graph as a matrix of connections between 
nodes. The element of an adjacency matrix A[i, j] =1 if 
there is an edge between i-th node and j-th node, or A[i, 
j]=0 otherwise. Context-networks for each class c∈C are 
learned using its own training data. A set of context-
networks for class c∈C is named as GC as equation (3), 
where Gi

C∈GC denotes i-th generated context-network of 
class C and αc is the number of generated context-networks 
for class C. 

 
Context-Networks of Class N 

},,{
321 GGGGG NNNNN

Nα
⋅⋅⋅=

 
Context-Networks of Class C 

 },,{
321 GGGGG ColColColColCol

Colα
⋅⋅⋅=  (3) 

Context-Networks of Class Fr 
},,{

321 GGGGG FrFrFrFrFr
Frα

⋅⋅⋅=
  

Context-Networks of Class O 
},,{ 321 GGGGG OOOOO

Oα
⋅⋅⋅=   

 
In the preprocessing stage, the collected data during non-

overlapped time window through multiple sensors are 
uniformly quantized to get discrete values for each sensor. 
Quantization is needed to process a large number of finely 

changing data in the structure learning process. Without 
quantization various graphs which are not generalized form 
are generated depending on subtle variations of the data. 
For these graphs, K2-metric score is too low to be 
produced by the K2-algorithm as well as it is difficult to 
extract common patterns from them. So our approach 
eliminates a slight change of signals using uniform 
quantization for all sensor signals. The quantized i-th 
sensor signal sampled at t=j, ŝ j[j] is computed as 

 

 [ ] [ ]ˆ i
j

i

s j
S j round
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 (4) 

 
where si[j] is i-th sensor value sampled at t=j, and qi is 
quantization step size of i-th sensor signal. In proposed 
approach, we initialized quantization step size qi to 10 for 
all sensors. In a context-network G=(V,E) is a directed 
graph, where V is a set of nodes and E is a set of edges. An 
edge e=<ns,ne>∈E, where ns, ne are tail and head of edge 
e, respectively, represents causal relationship, that is ns 
affects occurrence of ne. Thus structural features which are 
topological characteristics of the generated context-
network reflect these causal relationships among nodes in 
current situation. The path of the generated graphs in 
structure learning stage indicates patterns, which describes 
specific relations between each sensor node characterizing 
each class. The path patterns from generated context-
network are extracted, and these are used as structural 
features for situation recognition. Fig. 3 depicts the process 
of extracting patterns from the context-network. Pij

N 
denotes j-th path of Gi

N, which is i-th context-network of 
the normal class. Kn,i is the number of extracted path 

(a) Normal networks      (b) Collision networks 
 

(c) Fr_Collision networks   (d) Obstruction networks 

Fig. 2. Generated context-networks of four classes 

 
Fig. 3. Path pattern extraction from context-network 

 
Table 1. Path pattern from bayesian graphs of normal class 
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patterns from Gi
N. Each path pattern is a path from root to 

the leaf node of context-network [17]. Each path is 
represented as a sequence of nodes ordered from root node 
to the leaf node. In Fig. 3, 3 paths from root to the leaf 
nodes in the context-network are extracted, i.e. N1-N2-N3 
and N1-N2-N5-N6, N1-N4 where Ni is the i-th node. 

Table 1 shows path patterns PN={Pi1
N, Pi1

N,… PiK
N}, 

i=1,2,…αN for the context-networks of normal class. For 
collision class, fr_collision class and obstruction class, we 
generate path patterns PCol, PFr and PO, respectively from 
the learned context-networks. 

 
2.2 Classification stage  

 
Classification stage classifies input pattern into four 

classes. We designed a 2-layer neural network for pattern 
classification using extracted path patterns. Neural 
networks have emerged as an important tool for 
classification. The recent vast research activities in neural 
classification have established that neural networks are a 
promising alternative to various conventional classification 
methods. The advantage of neural networks lies in the 
following theoretical aspects. First, neural networks are 
data driven self-adaptive methods in that they can adjust 
themselves to the data without any explicit specification of 
the functional or distributional form of the underlying 
model. Second, they are universal functional approximations 
in that neural networks can approximate any function with 
arbitrary accuracy [12, 13]. For each class c∈C, the 
occurrence probability of each path p∈PS during training, 
P(p) is computed. For each class, the path patterns with 
highest probabilities are selected and used as input features 
of classification [17, 19]. These selected path patterns are 
defined as path features. For each distinctive selected path 
features pi=Ni1-Ni2-…Nim, a set of input nodes of neural 
network IPi={Ni1,Ni2,…Nim} is assigned. Every node in pi, 
i.e. Nij, j=1,2,…,m is assigned as an input node of IPi. Table 
2 shows path features which are selected path patterns for 
each class. The input nodes in each selected path feature 
are grouped separately as shown in Fig. 5. Note that a path 
feature can appear in different classes repeatedly, i.e. IP2 in 
collision class and obstruction class. The null denotes that 

there is no such path pattern in the context-network of that 
class. By using this organization of input layer, we can 
reflect not only topology of the generated context-network 
but also numerical properties of sensor signals. The output 
layer of neural network consists of 4 nodes, each of which 
corresponds to a class. The weights of connections are 
learned using back-propagation algorithm. During training 
phase, the input nodes belonging to the path features for 
the target class are given preprocessed current input values 
while other input nodes are given 0’s. During classification 
phase after training, the input nodes of Pi is provided with 
preprocessed sensor signals if generated context-network 
has path Pi, otherwise they are given 0. The current class is 
classified as 

 

 arg max ( )c c
C

c v o=  (5) 
 

where oc is output node for a class c, and v(.) denotes the 
value of an output node. Fig. 4 shows the whole process of 
the second phase for test and validation. In Fig. 4(a) shows 
quantization of a test dataset, Fig. 4(b) shows generation of 
a context network, Fig. 4(c) shows extraction of 3 path 
patterns from the generated context network, and Fig. 4(e) 
shows providing numerical values of sensors included in 
each path as input values of neural network. 

In our proposed method, accordingly; First) classification 
stage must have to use a neural network, and Second) 
structure learning stage is necessary to provide a neural 
network with the input values from the extracted path 
patterns. Third) we perform classification for the newly 
entered situation based on the sensor data collected during 
time window. 

Table 2. Define path feature of classes for input of neural 
network 

      Classes
Path  
Feature 

Normal Collision Fr_Collision Obstruction

1st Node IP1 2nd Node 
IP1

N null IP1
F null 

1st Node 
2nd Node IP2 
3rd Node 

null IP2
C null IP2

O 

1st Node • 
• 
• 2nd Node 

• 
• 
• 

• 
• 
• 

• 
• 
• 

• 
• 
• 

1st Node IPn 2nd Node 
IPn

N null IPn
F IPn

O 

Fig. 4. Process of validation phase 
 

 
Fig. 5. Neural network architecture 
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3. Experiments and Evaluation 
 
By using UCI Machine Learning Repository dataset, we 

have fully performed experiments to extract patterns from 
signals that are collected from multiple sensors in our 
proposed structure, and have utilized the input of the neural 
network of both extracted patterns of structural property 
and representing value of patterns in the classification 
stage. Through such experiments, we could analyze data 
collected from multiple sensors, and had performance 
verification how to recognize the situation. Moreover, we 
have carried out a comparison with objective performance 
of MLP and Bayesian Network Classifier (BNC), our 
proposed method.  

 
3.1 Multi-sensor signals for context-awareness 

 
We used robot execution failure data from the UCI 

Machine Learning Repository for conducting our 
experiments. Dataset is a collection of failure data 
occurring in approach process to grasp position. And 
dataset contains force and torque measurements of robot 
sensors during operation [10, 11]. Four situations of system 
behavior, that will be learned, are considered: i.e. normal, 
collision, front collision and obstruction. A normal 
situation represents a situation that a robot moves to a 
grasp position without any problems. In a front collision 
situation, there exists a collision between an obstacle and a 
front part of a robot. In a collision situation, there is a 
collision between an obstacle and the other part of the 
robot. The Obstruction represents a situation that robot is 
clogged with an obstacle. Each data set in a window Dt is 
constructed from sampled values of multiple sensors 
during fixed time interval of 315ms. A data set Dt=(T[1], 
T[2],…,T[n])T is a sequence of sampled data sets, where 
T[i] is a set of sampled data set at t=i, and n=15 is window 
size. 

 
 [ ] { [ ], [ ], [ ], [ ], [ ], [ ]}x y z x y zT i F i F i F i T i T i T i=  (6) 

 
Consists of three sampled force data for each axis, Fx, 

Fy and Fz, and three sampled torque data for each axis, Tx, 
Ty and Tz. We use 88 window datasets in this experiment. 
Table 3 shows the configuration of a window dataset. In 
this dataset, there are 15 sampled datasets [10, 11]. Table 3 
shows an example of the distribution of sensor values of Dt 

for normal class. Note the different ranges depending on 
sensors and changes of sampled values with respect to the 
time. 

 
3.2 Structure learning from multi-sensor signals using 

K2-algorithm 
 
Robot execution failure Dataset is collected during 

regular time by observation window. Each failure is 
characterized by 15force/torque samples collected at 
regular time intervals starting immediately after failure 
detection [9, 10]. Fig. 6 shows change of 6 sensor data in a 
data window after failure detection. It is observed that not 
only the distribution of each sensor values depends on class, 
but also the joint distribution of pair of sensor values 
differs according to the class. Because of such properties, it 
is necessary to extract structural properties of the data by 
learning algorithms [16, 20]. 

Since using one data window is not sufficient to describe 
current class, we constructed a 3-Cut data as an input of the 
Structure Learning Stage by concatenating 3 Data 
Windows. Also, we have formulated a training set that 
consists of 42 3-Cut data out of 88 data windows. 
Therefore the Structure Learning module learned 42 
context-networks of the normal class, one for each 3-Cut 
data. Each of context-networks has multiple paths from 
root node to terminal nodes as shown in Table 4. Patterns 
occurring frequently in context-network represent 
particular correlations between sensor signals that we have 
to treat significantly [21]. The most frequently appeared 
patterns are shown in the Table 4(b). We can see that a 1-2-
4-5-6 pattern appeared most frequently in the normal class. 
Also in Table 4(c), the values of each nodes included in the 
same path pattern has similar values for the generated 
context-networks for normal class. 

Table 5 shows extracted path patterns for 4 classes. 
Proposed method extracts the most frequently occurring 4 
path patterns (which are shown in shaded boxes) for each 
class. The number of patterns in Table 5, such as 6 in 1-2-
4-5-6 path pattern in the normal class, denotes the number 
of context networks of normal class which include 1-2-4-5-
6 path during training phase. It is observed that less 
frequently appearing path patterns degrade accuracy of 
recognition [22]. 

Table 3. Data in a window of normal class 

Sensors
Time Fx Fy Fz Tx Ty Tz 

1 -1 -1 63 -3 -1 0 
2 0 0 62 -3 -1 0 
3 -1 -1 61 -3 0 0 
• 
• 
• 

• 
• 
• 

• 
• 
• 

• 
• 
• 

• 
• 
• 

• 
• 
• 

• 
• 
• 

15 -1 0 64 -2 -1 0 Fig. 6. Change of sensor values in a data window 
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Table 4. Extracted path patterns from normal context-
network 

(a) Path pattern from normal class 

Normal Context-Network GN 
G1

N G2
N G3

N G4
N G5

N G6
N G7

N 
1-2-3-4-5-6 1-2-4 1-2-4-5-6 1-2-3 1-2-4 1-2-3-5-6 1-2-3

 1-3 1-3 1-2-4 1-3-4 1-2-4-5-6 1-2-4-5
 1-5-6  1-5-6 1-5-6  1-6 

G8
N G9

N G10
N G11

N G12
N G13

N G14
N

1-2-4-5-6 1-2-3 1-2-4-5-6 1-2-4 1-2-3 1-2-3 1-2-3-4-5
1-3 1-2-4-5-6 1-3 1-3 1-2-4 1-2-4-5-6 1-2-3-5

   1-5-6 1-2-5-6  1-6 
 

(b) Most frequently appeared path patterns 

1-2-4-5-6 1-3 1-2-4 1-2-3 1-5-6 1-6 
6 patterns 5 patterns 5 patterns 5 patterns 4 patterns 2 patterns

 
(c)Value of each node in path patterns 

1-2-4-5-6 Pattern 
  Graph

Node G3
N G6

N G8
N G9

N G10
N G13

N 

1 0 0 0 0 0 0 
2 0.22 0 0.22 0 0.22 0 
4 -10 -10.2 -5.11 -8.89 -7.11 -10.9 
5 -2.89 -3.56 -0.89 -2.89 -1.78 -3.78 
6 0 0 0 0 0 0 
 

Table 5. Path patterns of each class 

1-2 - 4 - 5 - 6 1-3 1-2-4 1-2-3 1-5-6 1-6 Normal 
6 5 5 5 4 2 

1-2-4 1-5 1-3 1-2-6 1-2-3 1-5-6 Collision 
15 12 10 8 3 3 

1-2-3 1-3 1-5 1-6 1-4 1-2 -4 -5 -6Fr 
Collision 11 11 9 8 6 4 

1-6 1-5 1-2-3 1-3 1-2-5 1-4 Obstructio
n 23 20 16 15 13 12 

 
3.3 Pattern classification 

 
The input data to be classified are applied to structure 

learning stage to construct a context-network Cin. From Cin, 
all paths from root node to leaf nodes li, i=1,2,…,n are 
extracted. For each path li, it is checked to see it this path 
exists in the input layer of neural network. It this path 
exists as IPi, the sensor values of the nodes in li are applied 
to the corresponding nodes in IPi. As shown in Table 4, 
some path patterns, for example 1-3 pattern, exist in 
context-networks of different classes. However, their 
sensor values of nodes in the path are different depending 
on the class. Fig. 7 shows conditional joint probability 
distribution of node1 and node3, 

 
 ( 1, 3 | ), { , , , }P node node C C N Col Fr O∈    (6) 

 
Fig. 7(a) shows P(node1, node3|N), in which node1 

mostly has value 0, and node3 mostly has value 60. 
Although node1 has mostly value 0 in P(node1,node3|O) 

as shown in Fig. 7(d), node3 has quite different distribution 
compared with P(node1, node3|N). While the values of 
node3 have similar distributions between normal class and 
collision class as shown in Figs. 7(a) and Fig. 7(b), node1 
has different distributions of values in these two classes. 
In fr_collision class and obstruction class, node3 has wider 
distribution of values than normal class and collision class. 
We can notice the value of node3 is generally less than 
or equal to the value of node1 in obstruction class. On 
the contrary, node1 has smaller value than node3 both in 
normal class and collision class. We reflect these 
characteristics of sensor value distributions with respect to 
classes into structural features. The strong correlation 
between nodes causes existence of an arc between these 
nodes in context-network. 

Table 6 shows 14 data used as training set of normal 
class. The green shaded boxes represent average values 
of each sensor node for four path patterns defined for 
the normal class, i.e. 1-3 path, 1-2-3 path, 1-2-4 path, and 
1-2-4-5-6 path. Table 7 shows performance comparison 
between the proposed methods and 2-layer perceptron. 
Input values for two layer perceptron are provided in two 
ways. The first method uses average value of sensor signals 
during concatenated time window.  

 

 
3*15

1

1 [ ], 1,2,...,6
45

avg
i i

k

sensor sensor k i
=

= =∑    (7) 

 
The second method computes sensor value as average of 

maximum as shown in equation (7). 
 

 
3

1

1 { [ ]}
3

rep k
i ijk

sensor Max sensor j
=

= ∑  (8) 

      (a) Normal class          (b) Collision class 

(c) Fr_Collision class      (d) Obstruction class 
Fig. 7. Sensor data distribution of each class 
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In equation (8) sensori

k[j] stands for j-th value of sensori 
in k-th data window. The performance is evaluated using 
average of recognition precision as following.  

 

 
1 1
4 4 i

i i

number of True Positives
i total number of classes classified as class

Class Class

precision =∑ ∑   (9) 

 
We experiment with changing the portion of the training 

data and the number of nodes in the hidden layer. In Table 
7, the third row shows the portion of training data out of 
whole data, and the number of nodes in the hidden layer as 
a number in parentheses used in each experiment. The 
fourth row denotes average of recognition precision for 
each experiment. It shows average precision of the 
proposed method becomes large as the number of hidden 
nodes grows. Generally, conventional MLP shows better 
result when average input (sensoravg) is used than average 
of maximum input (sensorrep) is applied. However, if we 
provide large number of hidden nodes in case of using 
sensorrep, it shows good performance (98%). When we use 
sensoravg in conventional MLP, the number of hidden 
nodes does not affect precision. Also, conventional 
Bayesian classifier shows better result when average input 

(sensoravg) is used than average of maximum input 
(sensorrep) is applied. Generally, the proposed method 
shows better performance compared with conventional 
MLP and Bayesian classifier. The best performance is 
acquired when we use 50 hidden nodes and 80% of whole 
data as training data. 

Fig. 8 shows comparison of the confusion matrices for 
the proposed method and multilayer neural networks, 
Bayesian classifier. Each column denotes ground truth, 
while each row represents system truth. The confusion 
matrices for the proposed method with different number of 
hidden nodes, i.e. 50 and 40, are shown in Figs. 8(a) and 
(b), respectively. In both matrices in (a) and (b), only 
Fr_collision class results in one incorrect classification as 
collision class. And Fig. 8(c) (d) shows the confusion 
matrices for result of the compared method, based on MLP 
with average sensor value and representative value as input. 
The Fr_collision class is misclassified to collision class in 
2 test cases in Fig. 8(c). Two test cases of collision class 
are misclassified to Fr_collision class in Fig. 8(d). And, 
Figs. 8 (e) (f) shows the confusion matrices for Bayesian 
classifier using representative value and average value of 
each sensor in dataset as an input of MLP. Fig. 8(e) shows 
poor performance especially for collision and Fr_collision 

Table 6. Input value of neural network for normal state 

Normal        Training 
Path             Data 
Features T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 

Node 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1-3 
Path Node 3 0 0 0 0 0 0 0.22 0 0 0 0 0 0 0.22

Node 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1-5  
Path Node 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Node 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1-6 
Path Node 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Node 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Node 2 0 0.22 0.22 -0.22 -0.44 0 0.22 0.22 0 0.22 -0.67 0 0 0.221-2-3 

Path 
Node 3 61.56 61.33 59.56 61.11 61.56 59.33 59.33 62.22 60.67 59.56 61.78 60.89 59.56 59.11
Node 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Node 2 0 0.22 0.22 -0.22 -0.44 0 0.22 0.22 0 0.22 -0.67 0 0 0.221-2-4 

Path 
Node 4 -2.67 -8.44 -10 -3.11 -7.33 -10.22 -12 -5.11 -8.89 -7.11 -5.33 -8.44 -10.89 -8 
Node 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Node 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1-2-5 

Path 
Node 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Node 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Node 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1-2-6 

Path 
Node 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Node 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Node 2 0 0.22 0.22 -0.22 -0.44 0 0.22 0.22 0 0.22 -0.67 0 0 0.22
Node 4 -2.67 -8.44 -10 -3.11 -7.33 -10.22 -12 -5.11 -8.89 -7.11 -5.33 -8.44 -10.89 -8 
Node 5 -0.44 -2.22 -2.89 -0.66 -2.22 -3.56 -5.56 -0.89 -2.89 -1.78 -1.33 -2.89 -3.78 -4 

1-2-4-5-6 
Path 

Node 6 0 0 0 0 0 0 0.22 0 0 0 0 0 0 0.22
 

Table 7. Performance evaluation of situation recognition  

Multi-Layer Perceptron Bayesian Classifier Proposed Method  
Average Representative Average Representative K2 

Training Rate 
(Hidden Node) 

70% 
(2) 

70% 
(10) 

70% 
(23) 

90% 
(12) 70% 70% 80% 

(40) 
80% 
(50) 

Precision Average 96% 96% 98% 74% 80% 89% 98% 100% 
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classes. While Fig. 8 (e) shows relatively better result than 
Fig 8. (f). It can be noticed that overgeneralization 
degrades performance as shown in Fig. 8 (e). 

 
 

4. Conclusion 
 
In this paper, we focus on studying the recognition of 

multiple sensor signals. We propose a systematic structure 
learning approach to automatically learn the Context-
Network. Neural networks using structural features 
(pattern) is designed and show this approach can achieve 
improved classification performance. Specifically, our 
structure learning process consists of three stages: sensor 
data quantization stage, the subsequent context-network 
generation stages with K2-algorithm and the path pattern 
extraction stage from context-network. Our automatically 
learned situation recognition model outperformed the 
Multi-Layer Perceptron on robot execution failure datasets. 
These results demonstrate the feasibility and recognition 
accuracy of the proposed approach for multiple sensor 
signals. In the future, the study to expand path features for 
improving class recognition performance is required. Also, 
automatic generation of path features from context-
networks should be investigated. The proposed method can 
be directly applied to multi-sensor based recognition 
system such as surveillance system, or context-aware 
system. 
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