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ABSTRACT: Cell phenotypes are determined by the
concerted activity of thousands of genes and their products.
This activity is coordinated by a complex network that
regulates the expression of genes. Understanding this
organization is crucial to elucidate cellular activities, and
many researches have tried to construct gene regulatory
networks from mRNA expression data which are nowadays
the most available and have a lot of information for cellular
processes.

Several computational tools, such as Boolean network,
Qualitative network, Bayesian network, and so on, have
been applied to infer these networks. Among them,
Bayesian networks that we chose as the inference tool have
been often used in this field recently due to their
well-established theoretical foundation and statistical
robustness. However, the relative insufficiency of
experiments with respect to the number of genes leads to
many false positive inferences. To alleviate this problem, we
had developed the algorithm of MONET(MOdularized
NETwork learning), which is a new method for inferring
modularized gene networks by utilizing two complementary
sources of information: biological annotations and gene
expression. Afterward, we have packaged and improved
MONET by combining dispersed functional blocks,
extending species which can be inputted in this system,
reducing the time complexities by improving algorithms,
and simplifying input/output formats and parameters so that
it can be utilized in actual fields. In this paper, we present
the architecture of MONET system that we have improved.

1 INTRODUCION

Cell phenotypes are determined by the concerted activity of
thousands of genes and their products. This activity is
coordinated by a complex network that regulates the
expression of genes. Understanding this organization is
crucial to elucidate cellular activities, and many researches
have tried to construct gene regulatory networks from
mRNA expression data which are nowadays the most

available and have a lot of information for cellular processes.

Among several computational formalisms, such as Boolean
networks and qualitative networks, Bayesian networks have
drawn increasing attention due to well-established
theoretical foundation and statistical robustness. Learning
Bayesian networks can be regarded as an inference of
relationships between nodes(i.e. genes) from observational
mRNA expression data. It is known that sufficiently large
amounts of expression profiles are required to infer
statistically reliable relationships among nodes. However, it

is hard or nearly impossible to secure such sufficient
amounts of expression profiles when hundreds or thousands
of genes are considered. This shortage of observation data
leads to many false positive edges; a significant portion of
inferred relationships is not consistent with known
biological knowledge. To alleviate this problem, several
techniques incorporating statistical biases and prior
biological knowledge have been proposed.

Friedman et al. have introduced two statistical techniques,
Sparse Candidates and model averaging. The former
restricts the maximum number of affecting genes for each
target gene so that the search space is reduced. The latter
generates multiple networks from different initial conditions,
and extracts commonly inferred edges. Other groups have
incorporated prior biological knowledge to refine network
structures. Hartemink et al. have applied the chromatin
immuno-precipitation (CHIP) assay and Tamada et al.
incorporated promoter sequence motif information as prior
knowledge. They both assumed that relationships between
transcription factor genes and their target genes should be
supported by other biological clues. Recently,
modularization approaches have been introduced by several
groups. They used clustering methods to divide a gene set
into smaller groups, and applied network learning over each
module.

To solve this problem, we had proposed a new method
for inferring modularized gene networks by utilizing two
complementary sources of information: biological
annotations and gene expression.

Recently, many bioinformatics-related algorithms have
been developed by various researchers, but there have been
not many softwares that we can utilize in actual use, and
that we can use easily with simple usage. Therefore, we
have not only developed the proposed algorithm but also
packaged and improved it so that it can be utilized in actual
field. To do that, we have combined dispersed functional
blocks, extended species which can be inputted in this
system, reduced the time complexities by improving
algorithms, and simplified input/output formats and
parameters.

2 SYSTEM ARCHITECTURE

2.1 Overview of Modularized Network Learning

First, seed genes, which respond very distinctively in a
specific experimental condition, are identified. Secondly,
the closely related genes with the seed genes based on
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biological annotations and expression data are grouped into
overlapped modules. After the identification of modules, the
proposed method infers a Bayesian network for each
module and integrates them through common intermediary
genes. The outline of the proposed method is depicted in
Figure 1.

2.2 Functional Description for Each Block

2.2.1 Preprocessing Block

a. Calculating Annotation Information (AI) for every
gene pairs

To identify genes involved in the same cellular processes as

seed genes, we utilize biological annotations such as MIPS
or GO. This prior knowledge provides us with reliable
explanations about biological roles of genes, but they have
unique characteristics which should be reflected properly.
First, biological annotations have a hierarchical structure.
Even though two annotations are different, they can be
closely related via common ancestors. Secondly, multiple
annotations are allowed for a single gene. Therefore, we
have to consider not only whether two genes share the same
annotation, but also how many annotations they share.
Lastly, biological annotations have different specificities.
For example, while a GO term, GO0006414 (Translational
elongation), annotates 309 yeast genes, another GO term,
GO0006448 (regulation of translational elongation),
annotates only three yeast genes. Therefore, in the context
of biological annotations, the degree of gene similarities not
only depends on the number of shared annotations, but also
depends on the specificity of them. Lord et al. showed that a
semantic tree can enable us to calculate the similarity of two
biological annotations based on their hierarchy and
specificity. We adopt this concept to identify the similarity
of two genes.

The Annotation Information (AI) score of two genes is
defined as a similarity measure of them in the context of
biological annotations 2. First, we build a semantic tree K
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from biological annotations. Each node in a semantic tree
corresponds to an annotation term in source biological
annotations, and it contains an Information Content value P,
which indicates how many genes each node, or any of its
children, annotates as a percentage. The Similarity score S
of two annotation terms f and f in a semantic tree K is
calculated by Resnik Measure as follows.

S(fi. f;) = - log (Information Content P of the closest parent
of f; and fj in a semantic tree K)

The Annotation Information(AI) score of two genes g; and
g is defined based on the Similarity score S of their
annotation terms.

Al(gi.g)) = X fe(ar(g)NT(g)) S(fk:ﬁf)_ +
MAX(fe(AT (g;) AT (g)))) Al f; (4T (g:) 4T (g;)) S5 fi)

AT(g;) : a set of annotation terms for a gene 7
AT(g;) : a set of annotation terms for a gene j

Annotation terms in AT(g;) and AT(g;) can be divided to
two categories: terms in common both sets or not. If two
genes share the same annotation terms, the Similarity score
of those terms are accumulated. This is based on the
assumption that if two genes share multiple annotations,
they are considered more similar than a pair of genes which
share a smaller part of those annotations. For the annotation
terms belonging to only one set, the maximum Similarity S
of all combination of annotation pairs is added to the
Annotation Information (AI) score. This is to prevent the Al
score from being increased due to a large number of
annotation terms some genes have, not due to their real
similarity.

b. Calculating Mutual Information (MI) for every gene

pairs

To find genes that participate in the same cellular activities
as seed genes but not annotated yet, we use Mutual
Information(MI) of mRNA expression data. Mutual
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Figure 1: Overview of Modularized Network Learning
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information indicates how much information one random
variable tells about another. Therefore, the MI score of two
expression profiles represents the degree of dependency
between two genes based on their mRNA expression
patterns. In the extreme case, if expression patterns of two
genes are completely independent, their MI score will be
zero. A Mutual Information (MI) score of two genes, g; and
g; is defined as follows.

Ml(ghgj) = in ij p(xivxj) log %

x; : a discretized expression value of a gene g;
x; : a discretized expression value of a gene g;

2.2.2 Seed Extraction Block

a. Processing Microarray Data as Input

Microarray-data that is plain-text file with ‘tab> delimitation
with rows of genes and columns of samples is accepted.
Then, the data is treated by smoothing, imputation, and
discretization.

b. Extracting Seed Gene by Distinctiveness

First, we define seed genes as a set of genes which show
significantly higher or lower expression levels in one
condition than in all the others. For example, S. cerevisiae
stress data from Gasch et al. consists of 173 experiments
consecutively measured in 16 different stress conditions;
every stress condition consists of several experiments.
Distinctiveness D of a gene i in one condition ¢ is based on
Sharmir’s measure and defined as follows:

D(gene;, condition,.) = M= pnei]

Oeit+Cci

m; is the mean expression value of gene i during
experiments belonging to the same condition ¢, while m—;
is the mean expression value of gene i during experiments
not belonging to a condition c. s; and s—; are the standard
deviations corresponding to the former and the latter cases,
respectively. Intuitively, a large difference between mci and
m-; indicates that gene i shows a distinctive expression
pattern in a condition ¢ compared to all the other conditions.
The smaller s; and s—;, the more consistent the expression
pattern of a gene i in both cases. Those genes whose
Distinctiveness D is greater than a threshold are extracted as
seed genes.

2.2.3 Seed Expansion Block
a. Expanding Seed Gene by Al and MI

Selected seed genes are expanded into modules by including
closely associated genes based on Annotation Information
(Al) and Mutual Information (MI) scores. Basically, one
seed gene is an initiating point to grow into a single module.

However, if more than one seed gene are close enough to
each other based on the AI and MI threshold values, they
are merged into a single module to avoid having multiple
modules of the almost same members in them.

2.2.4 Learning Block
a. Learning of subnetworks for individual modules

To learn Bayesian networks for individual modules, we
apply a Bayesian network learning technique, which is
based on hill climbing, sparse candidates and model
averaging. Beginning with randomly generated initial
networks, a hill climbing algorithm with random restart is
used to search the best matching network structures for a
given data. We use the MDL (Minimum Description
Length) score as an evaluation function for a network
structure. With N (here 100) best candidate networks, a final
network is built by selecting confident edges based on a
ratio of occurrences and a score of a network. The
Confidence score of an edge (edge) in N candidate
networks is defined as below:

Yo eShed e, Eny. Score(ny)
— I 8EiEN)-

Confidence (edgei) = Y es Score(n;)
/€S .

S = a set of N best networks

2.2.5 Integrating and Visualization Block

a. Integration of subnetworks via intermediaries

Integration of subnetworks is done by combining
subnetworks which share common genes between them.
Recall that genes can belong to multiple modules(i.e.
overlapped modularization). We call those genes belonging
to multiple modules as intermediary genes. These genes
play a role of intermediaries among subnetworks in the
sense that they may intermediate different cellular processes
or suggest related modules.

b. Visualization of whole network
Final result of the network is visualized by External

software “GraphViz.” Partial example of the network is
shown in Figure 2.

Figure 2: Example of Partial Graphs in S. Cerevisiae
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3 CONCLUSION

The whole procedure is composed of two main parts:
Module Identification and Interaction Inference. In the
Module Identification step, it identifies seed genes that
show distinctive expression patterns in a specific
experimental condition. Beginning with those seed genes,
functionally related genes are grouped into different
modules based on prior biological knowledge and
expression data in terms of the Annotation Information(AI)
and Mutual Information(MI) scores. In the Interaction
Inference step, an existing Bayesian network learning
algorithm is applied to each module to infer detailed
interactions among genes. Those separately inferred
subnetworks over each module are integrated into final
global networks through common intermediary genes.

We have packaged the algorithm of MONET into the
system that can be utilized on actual, biological fields. This
system can provide us with global picture of actively
responding biological processes as well as detailed look of
relationship among genes with reduced false positive even
though the number of expression profiles is not enough
relative to the number of genes. In the next, we need to
search optimal parameters with respect to each species, and
integrate visualization block.
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