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Abstract

Nowadays, due to development of automatic control devices and various sensors, one operator can freely handle
several remote plants and processes. Automatic diagnosis and warning systems have been adopted in various fields, in
order to prepare an operator’s absence for patrolling plants. In this paper, a Bayesian networks based on-line diagnosis
system is proposed for a wastewater treatment process. Especially, the suggested system is included learning structure,
which can continuosly update conditional probabilities in the networks. To evaluate performance of proposed model,
we made a lab-scale five-stage step-feed enhanced biological phosphorous removal process plant and applied on-line

diagnosis system to this plant in the summer.
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1. Introduction

When the industrial process is born breakdown sud-
denly, fault detection and faulty cause analysis techniques
are important. Fast and accurate diagnosis is not only
capable of restarting and repairing process but also guar-
anteed system’s long-life and good health. Therefore,
it is a core technology in fault diagnosis that fast find-
ing of faulty cause and prevention of damage extension.
Figure 1 shows relations among Wastewater Treatment
Plant(WWTP), monitor/control, prevention/diagnosis and
consult/advice. Only about ten years ago, one WWTP
was maintained by several workers who included an op-
erator, electrical/mechanical engineers and a chemical an-
alyst. Recently, due to drastic development of computer
power, sensor technologies, and wideband broadcast com-
munications, one operator handles several remote WWTPs
simultaneously in a central control room. However, an
automated WWTP has various kinds of additional hard-
ware devices which are electrical/mechanical machinery
and complicated sensors. Therefore, to fully utilize these
hardware devices, automatic control strategies and data ac-
quisition/analysis softwares are also necessary. In this pa-
per, we suggested a kind of useful software system which
is the on-line diagnosis system with a Bayesian network
for unmanned WWTPs. In order to study more practically,
the lab-scale five-stage step-feed enhanced biological phos-
phorous removal (fsEBPR) plant had been built, and our
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on-line diagnosis system was installed on this plant.

2. Learning Bayesian Networks

A Bayesian network is a graphical model that has sev-
eral advantages for real-world data analysis and finding re-
lationships among variables. Most of all, a Bayesian net-
work based algorithm is regarded as an ideal approach for
combining background knowledge and sensory data be-
cause of the causal and probabilistic semantics. Therefore,
both the knowledge extraction and the rule generation with
a Bayesian network approach have been studied and re-
ported on in many papers in various fields [1-7].

A Bayesian network model is usually sketched by di-
rected acyclic graphs (DAGs), in which nodes represent
random variables. A Bayesian network is used to esti-
mate target nodes using probabilistic relations of other vari-
ables or observed data. The way to find probability distri-
bution for the target variable is said to be inference. In
general, the computation of a probability of a constructed
model is known as probabilistic inference. Since 1960s
many researchers have illustrated the usefulness and per-
formance of Bayesian probabilistic inference in various
fields. Bayesian related studies in applications were cat-
egorized into following two topics.

e The powerful graphical presentation ability - It is
well-known to real-world system designers.
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Figure 1: The relations among WWTP, monitor/control, diagnosis, and consult/advice

e The reasonable and flexible inference ability - It
is well-suited for development of estimation and
decision-support systems.

Some new areas have been suggested for researching the
use of Bayesian networks: learning structures and up-
date algorithms, calculation and performance improvement
methods, various sampling methods, fast and accurate rea-
soning methods, and other decision-making methods.

In order to briefly explain a general probabilistic infer-
ence procedure, some notations are introduced. Here, let
X be the query variable, E be the set of evidence variables,
e be the observed values, Y be the remaining unobserved
variables, and o be the normalization constant. The query
of P(X|e) can be evaluated as
P(X|e) = aP(X,e) = aZP(X,e,y), vyeY,ecE

y

M
where the summation is over all possible ys. Notice that to-
gether the variables X, E, and Y constitute the complete set
of variables for the domain; thus P(X, e, y) is simply a sub-
set of probabilities from the full joint distribution. There-
fore, once the a priori probability of a number of variables
is specified, it is possible to calculate the priori probabilities
for all the nodes in the network. This can be done by utiliz-
ing a basic probability calculus and Bayes’ Theorem. Once
the conditional probabilities of linked variables are speci-
fied and the priori beliefs of observable variables are de-
cided, it is possible to calculate the priori probabilities for
all the other nodes in the network by Eq. (1). A priori belief
is modified as new knowledge about the system is obtained,
in the form of an observation of the values assumed by one
or more variables. Hence, priori beliefs are substituted by
the observation values for these variables. In addition, the
beliefs about the others are updated through belief propa-
gation[8]. Russell et al[9]. suggested the gradient ascent
rule which maximizes P(D|h) by following the gradient
of InP(D|h) with respect to the parameters that define the
conditional probability tables of the Bayesian network. Let
w;;1 denote a single entry in one of the conditional proba-
bility tables. In particular, let w;;z denote the conditional
probability that the network variable Y; will take on the
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value y;; given that its immediate parents U; take on the
values given by u;z. The gradient of InP{D|h) is given by
the derivatives 8 In P(D|h) /0w, for each of the w; . As
we show below, each of these derivatives can be calculated
as

3l P(DIh) _ Z P(Y; = yi5, Ui = ur|d) @

Owijk D Wijk
We require that as the weights w;;; are updated they must
remain valid probabilities in the interval [0,1]. We also re-
quire that the > ; wi;x remains 1 for all i,k. These con-
straints can be satisfied by updating weights in a two-step

process. First, we update each w; ;¢ by gradient ascent

dln P(Dl|h

Wijk + Wijk __5wfj—kll (3
where 7 is a small constant and called the learning rate.
Second, we renormalize the weights w;;, to assure that the
above constraints are satisfied. As discussed by Russell et
al., this process will converge to a locally maximum like-
lihood hypothesis for the conditional probabilities in the

Bayesian network.

3. Lab-scale Five-stage Step-feed EBPR Plant

To diagnosis WWTP, we made a lab-scale fSEBPR
plant at first hand. Figure 2 shows the schematic diagram
of the fsEBPR plant. As shown in Fig. 2, our fSEBPR
plant has two additional controlable influent water injec-
tion flows, typical WW'TPs have just one influent water in-
jection flow, so it is not easy to operate the whole processes.
However, the fSEBPR is able to be maximized its treat-
ment capacity by control of two additional injection flow
rates. This WWTP functionally consists of pre-anoxic pro-
cess, anaerobic process, first anoxic (dPAO) process, sec-
ond anoxic process, aerobic process and settler. But physi-
cally it is composed of total 15 tanks and 1 settler as shown
in Figs. 3 and 4. We have summarized operation conditions
of our fsSEBPR in table 1.
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Figure 2: Schematic diagram of five-stage step-feed EBPR process

4. Diagnosis Learning Bayesian networks
model for WWTP

The proposed Bayesian network model is expected to
have two roles. One role is an effluent water quality pre-
dictor and the other role is an artificial WWTP diagnosti-
cian. Because effluent water quality is only reported once
a day at the most loaded time, proposed Bayesian network
is designed to predict phosphate, NH4 and nitrate concen-
trations, which are major items included in a daily effluent
water quality report, and to diagnose current status of each
process with sensor data and real/predicted water quality.
In order to achieve more accurate prediction and diagnosis
of WWTP, DO, ORP, pH and temperature sensors were in-
stalled in each tank. Figure 4 shows the installed sensors,
their locations, and measurable data.

In order to design Bayesian networks for WWTP based
on related chemical reaction processes and expert knowl-
edge, we designed three Bayesian networks which were re-
lated to Phosphates, Nitrates and NHy, respectively.

The designed three networks are as follows [10-13]:
(i) In the case of Effluent Nitrates, Effluent Nitrates are di-

rectly related with the nitrification process. Thus, DO, Car-
bon, Alkalinity, and Ax mixing are parent nodes of Effluent
Nitrates.

(i1) In the case of Effluent N Hy, Effluent N H 4 is inversely
proportional to a denitrificationreaction, Thus, considering
the denitrification process, the N Hy4 Load is source mate-
rial. Furthermore, DO, Aero pH, Temperature, Ox mixing,
and SRT are components of reaction conditions for denitri-
fication.

(iii) In the case of Effluent P, it is closely related with the
EBPR process. The EBPR process has two kinds of reac-
tions, one occurring under acrobic conditions and the other
under anaerobic conditions. Thus, the design of an Efflu-
ent P related network is very complicated. So, instead of
directly imitating the EBPR process, we try to create node
relations by combination of indirect indices. Finally, an Ef-
fluent P node is only connected with MLSS, DO, and SRT
nodes.

Node’s relations are shown in Fig. 5. Of course, ini-
tial probabilities are calculated by their correlated node’s
conditional probabilities and Bayes” Theorem. This model
is presented in related expert knowledge, chemical process

Figure 3: Lab-scale Five-stage Step-feed EBPR Process
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Figure 4: Installed sensors’ location and measured data in fSEBPR

reactions, and detail causes and effects among whole equip-
ment and devices. Initial data for the conditional probabil-
ities setting was obtained from a pilot-scale plant, which
had been operated as fSEBPR process for 655 days from
February, 2000 to November, 2001. This data was also ac-
quired from a similar fSEBPR process but its operational
conditions had been changed by its influent water charac-
teristics, degree of process stability and activated sludge
status etc,. Therefore, we should take two-step probabili-
ties setting procedures: definitely related nodes had prob-
abilities calculated from initial data; The other uncertain
nodes were decided by operator’s experience and common
knowledge.

5. Experiment Results

On-line diagnosis system for fSEBPR process is imple-
mented as shown in Fig. 6. In Fig. 6, white nodes are
just estimated nodes but patterned nodes are estimated and
checked ones. Because patterned nodes have their own
sensor(s), we can make a check and diagnosis status on
each sensor value. Therefore, conditional probability tables

Motor @
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/

about white nodes cannot be updated using learning strat-
egy. We evaluate our suggested Bayesian network model
using lab-scale plant data for about three months from July
to September, 2006. This period is a summer in Korea and
it is generally hard to operate the plant because high tem-
peratures seriously influence a small size lab-scale plant.
Table 2 shows influent characteristics of the lab-scale plant.
We try to predict and diagnose with two kinds of Bayesian
network. One is a BN model which is a Bayesian network
without learning structure and the other is a LBN model
which is a learning Bayesian network with the gradient as-
cent algorithm which has a learning rate = 0.2. Accord-
ing to our lab-scale operational data, our plant had 18 days
of at least one component abnormal effluent water quality,
and 51 days with at least one sensor data out of the nor-
mal range. After we applied the prediction and diagnosis
procedures to our evaluation data, we summarized the pre-
diction and diagnosis results from two models as shown in
table 3. Table 4 shows monthly diagnostic results. Both the
BN model and the LBN model are set up using other large-
scale plant operation data. Thus, their diagnosis results are
similar in the beginning of July. However, in August, cach
model’s diagnosis results are very different because LBN
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Figure 5: The Diagnosis Bayesian network Model for WWTP
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Figure 6: GUI of On-line Diagnosis System for fSEBPR Process

model probabilities are updated during the previous month.
As can clearly be seen for Carbon and NH, elements, the
BN model warns of Carbon and NH states 25 times, while
the LBN model never warns of these elements. This is
because initial probabilities are biased about Carbon and
NH,. On the other hand, in considering SBH, DO, Temper-
ature, and pH-level elements, the LBN model is very stable
and reliable. We could not evaluate fault detection ability
for the models regarding devices and sensors, because we
never detected a device fault or an equipment error in three
months. However, according to the process diagnostic per-
formance of the LBN model, its diagnostic ability is also
ensured.

6. Conclusion

The lab-scale fSEBPR process had been built at first
hand and it has been operated for about 1 year, before we
implemented the prediction and diagnostic system. For op-
eration periods, frequent unexpected abnormal conditions

and device faults were detected, which is the motivation
for our study. In order to suggest a practical and effective
diagnostic algorithm for the fSEBPR, we decided to imple-
ment a diagnostic model with a Bayesian network. Most
importantly, we adopted a Bayesian approach because it is
based on a strict foundation of probability theory, it has
easy to understand diagnostic results, and it is guaranteed
to provide reasonably accurate diagnostic results. In ad-
dition, its results are stable and robust against noisy sen-
sor data and disturbance. In this paper, we suggest two
kinds of Bayesian network models. One is a Bayesian net-
work model without an additional probability update strat-
egy and the other is a learning Bayesian network model. In
fact, we suggested two models because we could not set up
the initial probabilities with our own plant data. Because
it usually requires a few months to set up and operate de-
sired operational conditions in a WWTP, we had to obtain
operation data from other plants. Thus, we had to adjust
and optimize diagnostic models using the learning method.
However, adjustment and optimization procedures are not
extraordinary, and most diagnostic systems should adopt

Table 4: Each monthly frequency of warning/caution elements for the BN model and LBN model

Bayesian model Learning Bayesian model

July [ Aug. | Sep. | Sum || July [ Aug. | Sep. | Sum

SBH 11 17 2 30 10 5 - 15

DO 5 12 2 19 5 5 - 10
External Carbon | 15 25 2 42 3 - - 3
NH4 Load 15 25 2 42 3 - 3
Temperature 7 7 - 14 7 5 - 12
Aerobic pH 9 - - 9 7 - - 7
MLSS 1 - - 1 1 - - 1
SUM [ 63 | 86 | 8 | 157 H 36 | 15 | - | 51
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these procedures. In conclusion, the LBN model is supe-
rior to BN model and we verified that the LBN model is
well-adapted to the diagnosis field. As a modeling method,
Bayesian approaches have some basic limitations. First,
whole network design procedures entirely depend on op-
erator knowledge and experience regarding WWTPs. Sec-
ond, if there are insufficient data, reliability of the model
drastically decreases. To overcome insufficient data prob-
lems, many researchers have suggested various methods
like the MCMC (Markov Chain Monte Carlo) method [14]
and Particle filter method [15, 16]. In the near future, we
will suggest more robust and reliable diagnostic methods
and compare the diagnostic performance among various
models.
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