• 제목/요약/키워드: Leak Detection

검색결과 242건 처리시간 0.02초

다크웹 환경에서 산업기술 유출 탐지 시스템 (Industrial Technology Leak Detection System on the Dark Web)

  • 공영재;장항배
    • 스마트미디어저널
    • /
    • 제11권10호
    • /
    • pp.46-53
    • /
    • 2022
  • 오늘날 4차 산업 혁명과 대규모 R&D 지원으로 인해 국내 기업은 세계 기술력 수준의 산업기술을 보유하기 시작하였으며 중요한 자산으로 변모하였다. 국가는 기업의 중요한 산업기술을 보호하고자 국가핵심기술로 지정하였으며, 특히 원자력, 조선, 반도체와 같은 기술이 유출될 경우 해당 기업뿐만 아니라 국가 차원에서도 심각한 경쟁력 손실로 이어질 수 있다. 매년 내부자 유출, 랜섬웨어 그룹의 해킹공격, 산업스파이에 산업기술 탈취 시도가 증가하고 있으며, 탈취된 산업기술은 다크웹 환경에서의 은밀하게 거래가 이루어진다. 본 논문에서는 다크웹 환경에서 은밀하게 이루어지는 산업기술 유출을 탐지하는 시스템을 제안한다. 제안된 모델은 먼저 OSINT 환경에서 수집한 정보를 이용하여 다크웹 크롤링을 통한 데이터베이스를 구축한다. 이후 KeyBERT 모델을 이용한 산업기술 유출 키워드를 추출한 후 다크웹 환경에서의 산업기술 유출 징후를 정량적 수치로 제안한다. 마지막으로 식별된 다크웹 환경에서의 산업기술 유출 사이트를 기반으로 PageRank 알고리즘 통한 2차 유출 가능성을 탐지한다. 제안된 모델을 통해 27,317개의 중복 없는 다크웹 사이트를 수집하였으며, 100개의 원자력 특허에서 총 15,028개의 원자력 관련 키워드를 추출하였다. 가장 높은 원자력 유출 다크웹 사이트를 기반으로 2차 유출을 탐지한 결과 12개의 다크웹 사이트를 식별하였다.

퍼지 멤버쉽 함수와 신경망을 이용한 이상 침입 탐지 (Anomaly Intrusion Detection using Fuzzy Membership Function and Neural Networks)

  • 차병래
    • 정보처리학회논문지C
    • /
    • 제11C권5호
    • /
    • pp.595-604
    • /
    • 2004
  • 컴퓨터 네트워크의 확대 및 인터넷 이용의 급격한 증가에 따른 최근의 정보통신 기반구조는 컴퓨터 시스템의 네트워크를 통한 연결로 다양한 서비스를 제공하고 있다. 특히 인터넷은 개방형 구조를 가지고 있어 서비스 품질의 보장과 네트워크의 관리가 어렵고, 기반구조의 취약성으로 인하여 타인으로부터의 해킹 및 정보유출 둥의 위협으로부터 노출되어 있다. 보안 위협에 대한 능동적인 대처 및 침입 이후에 동일한 또는 유사한 유형의 사건 발생에 대해 실시간 대응할 수 있는 방법이 중요하게 되었으며 이러한 해결책으로서 침임 탐지 시스템에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 지도학습 알고리즘이 의한 침입탐지 시스템의 성능을 향상시키기 위해서 불확실성을 해결하기 위한 방법인 퍼지를 적용한 뉴로-퍼지 모델의 이상 침입 탐지 시스템에 대해서 연구한다. 즉, 신경망 학습의 전달함수를 불확실성을 해결하기 위한 퍼지 멤버쉽 함수로 수정하여 지도학습을 수행하였다. 제안한 뉴로-퍼지기법을 DARPA 침입 데이터를 이용하여 오용 탐지의 한계성을 극복한 네트워크기반의 이상침입 탐지에 적용하여 성능을 검증하였다.

앙상블 학습의 부스팅 방법을 이용한 악의적인 내부자 탐지 기법 (Malicious Insider Detection Using Boosting Ensemble Methods)

  • 박수연
    • 정보보호학회논문지
    • /
    • 제32권2호
    • /
    • pp.267-277
    • /
    • 2022
  • 최근 클라우드 및 원격 근무 환경의 비중이 증가함에 따라 다양한 정보보안 사고들이 발생하고 있다. 조직의 내부자가 원격 접속으로 기밀 자료에 접근하여 유출을 시도하는 사례가 발생하는 등 내부자 위협이 주요 이슈로 떠오르게 되었다. 이에 따라 내부자 위협을 탐지하기 위해 기계학습 기반의 방법들이 제안되고 있다. 하지만, 기존의 내부자 위협을 탐지하는 기계학습 기반의 방법들은 편향 및 분산 문제와 같이 예측 정확도와 관련된 중요한 요소를 고려하지 않았으며 이에 따라 제한된 성능을 보인다는 한계가 있다. 본 논문에서는 편향 및 분산을 고려하는 부스팅 유형의 앙상블 학습 알고리즘들을 사용하여 악의적인 내부자 탐지 성능을 확인하고 이에 대한 면밀한 분석을 수행하며, 데이터셋의 불균형까지도 고려하여 최종 결과를 판단한다. 앙상블 학습을 이용한 실험을 통해 기존의 단일 학습 모델에 기반한 방법에서 나아가, 편향-분산 트레이드오프를 함께 고려하며 유사하거나 보다 높은 정확도를 달성함을 보인다. 실험 결과에 따르면 배깅과 부스팅 방법을 사용한 앙상블 학습은 98% 이상의 정확도를 보였고, 이는 사용된 단일 학습 모델의 평균 정확도와 비교하면 악의적인 내부자 탐지 성능을 5.62% 향상시킨다.

휴대용 압력파 발생장치를 사용한 단일관로에서의 누수탐지 연구 (Study of leak detection in a pipeline system using a portable pressure wave generator)

  • 고동원;이정섭;김진원;김상현
    • 상하수도학회지
    • /
    • 제34권2호
    • /
    • pp.139-147
    • /
    • 2020
  • This paper suggests a nonlinear pressure consideration scheme through an unsteady pipe network analyzer for leakage detection with a portable pressure wave generator. In order to evaluate the performance of a proposal scheme, linear input pattern has been simulated and experiments had been carried out under both no leakage and one leakage conditions in a reservoir-pipeline-valve system. This method using portable pressure wave generator showed that a leakage can be detected from a reflection where a leakage is originated through time domain analysis. Meaningful similarity in pressure response between nonlinear input pattern and experimental results were found both no leakage and a leakage conditions.

Transient Analysis and Leakage Detection Algorithm using GA and HS algorithm for a Pipeline System

  • Kim Sang-Hyun;Yoo Wan-Suk;Oh Kwang-Jung;Hwang In-Sung;Oh Jeong-Eun
    • Journal of Mechanical Science and Technology
    • /
    • 제20권3호
    • /
    • pp.426-434
    • /
    • 2006
  • The impact of leakage was incorporated into the transfer functions of the complex head and discharge. The impedance transfer functions for the various leaking pipeline systems were also derived. Hydraulic transients could be efficiently analyzed by the developed method. The simulation of normalized pressure variation using the method of characteristics and the impulse response method shows good agreement to the condition of turbulent flow. The leak calibration could be performed by incorporation of the impulse response method with Genetic Algorithm (GA) and Harmony Search (HS). The objective functions for the leakage detection can be made using the pressure-head response at the valve, or the pressure-head or the flow response at a certain point of the pipeline located upstream from the valve. The proposed method is not constrained by the Courant number to control the numerical dissipation of the method of characteristics. The limitations associated with the discreteness of the pipeline system in the inverse transient analysis can be neglected in the proposed method.

Reproduction strategy of radiation data with compensation of data loss using a deep learning technique

  • Cho, Woosung;Kim, Hyeonmin;Kim, Duckhyun;Kim, SongHyun;Kwon, Inyong
    • Nuclear Engineering and Technology
    • /
    • 제53권7호
    • /
    • pp.2229-2236
    • /
    • 2021
  • In nuclear-related facilities, such as nuclear power plants, research reactors, accelerators, and nuclear waste storage sites, radiation detection, and mapping are required to prevent radiation overexposure. Sensor network systems consisting of radiation sensor interfaces and wxireless communication units have become promising tools that can be used for data collection of radiation detection that can in turn be used to draw a radiation map. During data collection, malfunctions in some of the sensors can occasionally occur due to radiation effects, physical damage, network defects, sensor loss, or other reasons. This paper proposes a reproduction strategy for radiation maps using a U-net model to compensate for the loss of radiation detection data. To perform machine learning and verification, 1,561 simulations and 417 measured data of a sensor network were performed. The reproduction results show an accuracy of over 90%. The proposed strategy can offer an effective method that can be used to resolve the data loss problem for conventional sensor network systems and will specifically contribute to making initial responses with preserved data and without the high cost of radiation leak accidents at nuclear facilities.

$3.2\;{\mu}m$ 중적외선 센서를 이용한 메탄가스누출검지기의 개발 (Development of Methane Gas Leak Detector Using Mid-infrared Ray Sensors with $3.2\;{\mu}m$)

  • 박규태;유근준;한상인;오정석;김지윤;안상국;윤명섭;권정락
    • 한국가스학회지
    • /
    • 제12권2호
    • /
    • pp.48-52
    • /
    • 2008
  • 산업의 성장으로 가스사용량이 증가함에 따라 가스설비, 화학플랜트 등 시설 또한 점차로 증가하고 있으나, 가스에 대한 안전관리는 여전히 미흡한 실정이다. 공장과 가정에서 많이 사용되고 있는 메탄은 천연가스의 주성분으로 가연성이면서 폭발성가스이어서 그에 대한 안전관리도 매우 중요하다. 그 한 가지 방안으로 $3.2\;{\mu}m$ 중적외선 영역의 LED 및 PD를 이용하여 메탄가스누출검지시스템을 개발하고자 한다. 이 파장대역의 센서로 레이저를 이용할 경우 고열이 발생하여 초저온 냉각장치가 필요하나 LED는 상온에서 동작함으로 냉각장치가 필요 없다. 그래서 초소형이나 휴대용으로 구현이 가능하다. $3.2\;{\mu}m$ 부근의 파장대역은 $1.67\;{\mu}m$에 비하여 메탄흡수강도가 강하여서 극미량의 가스탐지가 가능하고 응답성 또한 빠르다. 본 연구에서는 이를 상용화하여 매설 및 노출배관 등 가스설비의 가스누출을 보다 정확하고 신속히 검지함으로써 사고를 미연에 방지하고 그 피해를 최소화하고자 한다.

  • PDF

패스트 데이터 기반 실시간 비정상 행위 탐지 시스템 (Real-time Abnormal Behavior Detection System based on Fast Data)

  • 이명철;문대성;김익균
    • 정보보호학회논문지
    • /
    • 제25권5호
    • /
    • pp.1027-1041
    • /
    • 2015
  • 최근, Verizon(2010), 농협(2011), SK컴즈(2011), 그리고 3.20 사이버 테러(2013)와 같이 소중한 정보가 누출되고 자산에 피해가 발생한 후에야 보안 공격을 인지하는 APT (Advanced Persistent Threat) 공격 사례가 증가하고 있다. 이러한 APT 공격을 해결하고자 이상 행위 탐지 기술 관련 연구가 일부 진행되고 있으나, 대부분 알려진 악성 코드의 시그너쳐 기반으로 명백한 이상 행위를 탐지하는데 초점을 맞추고 있어서, 장기간 잠복하며 제로데이 취약점을 이용하고, 새로운 또는 변형된 악성 코드를 일관되게 사용하는 APT 공격에는 취약하여, 미탐율이 굉장히 높은 문제들을 겪고 있다. APT 공격을 탐지하기 위해서는 다양한 소스로부터 장기간에 걸쳐 대규모 데이터를 수집, 처리 및 분석하는 기술과, 데이터를 수집 즉시 실시간 분석하는 기술, 그리고 개별 공격들 간의 상관(correlation) 분석 기술이 동시에 요구되나, 기존 보안 시스템들은 이러한 복잡한 분석 능력이나 컴퓨팅 파워, 신속성 등이 부족하다. 본 논문에서는 기존 시스템들의 실시간 처리 및 분석 한계를 극복하기 위해, 패스트 데이터 기반 실시간 비정상 행위 탐지 시스템을 제안한다.

연료전지자동차의 고압수소저장시스템 수소 누출 안전성 평가 (The Evaluation of Hydrogen Leakage Safety for the High Pressure Hydrogen System of Fuel Cell Vehicle)

  • 김형기;최영민;김상현;심지현;황인철
    • 한국수소및신에너지학회논문집
    • /
    • 제23권4호
    • /
    • pp.316-322
    • /
    • 2012
  • A fuel cell vehicle has the hydrogen detection sensors for checking the hydrogen leakage because it use hydrogen for its fuel and can't use a odorant to protect the fuel cell stack. To verify the hydrogen safety of leakage we select the high possible leak points of fittings in hydrogen storage system and test the leaking behavior at them. The hydrogen leakage flow rate is 10, 40, 118 NL/min and the criterion for maximum hydrogen leakage is based on allowing an equivalent release of combustion energy as permitted by gasoline vehicles in FMVSS301. There are total 18EA hydrogen leakage detection sensors installed in test system. we acquire the hydrogen leakage detection time and determine the ranking. Hydrogen leakage detection time decrease when hydrogen leakage flow rate increase. The minimum hydrogen leakage detection time is about 3 seconds when the flow rate is 118NL/min. In this study, we optimize hydrogen sensor position in fuel cell vehicle and verify the hydrogen leakage safety because there is no inflow inside the vehicle.

선박용 밸브의 내부 누설 진단을 위한 음향방출신호의 머신러닝 기법 적용 연구 (Diagnosis of Valve Internal Leakage for Ship Piping System using Acoustic Emission Signal-based Machine Learning Approach)

  • 이정형
    • 해양환경안전학회지
    • /
    • 제28권1호
    • /
    • pp.184-192
    • /
    • 2022
  • 밸브의 내부 누설 현상은 밸브의 내부 부품의 손상에 의해 발생하며 배관 시스템의 사고와 운전정지를 일으키는 주요 요인이다. 본 연구는 버터플라이형 밸브의 내부 누설에 따라 배관계에서 발생하는 음향방출 신호를 이용하여 배관 가동 중 실시간 누설 진단의 가능성을 검토하였다. 이를 위해 밸브의 작동 모드별로 측정한 시간영역의 AE 원시신호를 취득하였으며 이로부터 구축한 데이터셋은 데이터 기반의 인공지능 알고리즘에 적용하여 밸브의 내부 누설 유무를 진단하는 모델을 생성하였다. 누설 유무진단을 분류의 문제로 정의하여 SVM 기반의 머신러닝과 CNN 기반의 딥러닝 분류 알고리즘을 적용하였다. 데이터의 특징 추출에 기반한 SVM 분류 모델의 경우, 이진분류 모델에서 구축된 모델에 따라 83~90%의 정확도를 나타냈으며, 다중 클래스인 경우 분류 정확도가 66%로 감소하였다. 반면, CNN 기반의 다중 클래스 분류 모델의 경우 99.85%의 분류 정확도를 얻을 수 있었다. 결론적으로 밸브 내부 누설 진단을 위한 SVM 분류모델은 다중 클래스의 정확도 향상을 위해 적절한 특징 추출이 필요하며, CNN 기반의 분류모델은 프로세서의 성능 저하만 없다면 누설진단과 밸브 개도 분류에 효율적인 접근방법임을 확인하였다.