DOI QR코드

DOI QR Code

Reproduction strategy of radiation data with compensation of data loss using a deep learning technique

  • Received : 2020.09.20
  • Accepted : 2021.01.11
  • Published : 2021.07.25

Abstract

In nuclear-related facilities, such as nuclear power plants, research reactors, accelerators, and nuclear waste storage sites, radiation detection, and mapping are required to prevent radiation overexposure. Sensor network systems consisting of radiation sensor interfaces and wxireless communication units have become promising tools that can be used for data collection of radiation detection that can in turn be used to draw a radiation map. During data collection, malfunctions in some of the sensors can occasionally occur due to radiation effects, physical damage, network defects, sensor loss, or other reasons. This paper proposes a reproduction strategy for radiation maps using a U-net model to compensate for the loss of radiation detection data. To perform machine learning and verification, 1,561 simulations and 417 measured data of a sensor network were performed. The reproduction results show an accuracy of over 90%. The proposed strategy can offer an effective method that can be used to resolve the data loss problem for conventional sensor network systems and will specifically contribute to making initial responses with preserved data and without the high cost of radiation leak accidents at nuclear facilities.

Keywords

Acknowledgement

This work was supported by the Energy Technology Program of the Korea Institute of Energy Technology Evaluation and Planning granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20191510301290) and by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT under 2017M2A8A4056388, 2018M2C7A1A02071506, and 2020M2A8A1000830.

References

  1. H.T. Jeon, M.K. Je, I.Y. Kwon, Radiation-hardened sensor interface circuit for monitoring severe accidents in nuclear power plants, IEEE Trans. Nucl. Sci. 67 (2020) 1738-1745. https://doi.org/10.1109/TNS.2020.3002421
  2. A.R. Ware, C.W. Fern, The need and requirements for environmental monitoring, Nucl. Eur. 3 (4) (1988) 20.
  3. J. Towler, B. Krawiec, K. Kochersberger, Radiation mapping in post-disaster environments using an autonomous helicopter, Rem. Sens. 4 (2012) 1995-2015. https://doi.org/10.3390/rs4071995
  4. A.H. Zakaria, Y.M. Mustafah, J. Abdullah, N. Khair, T. Abdullah, Development of autonomous radiation mapping robot, Procedia Comput. Sci. 105 (2017) 81-86. https://doi.org/10.1016/j.procs.2017.01.203
  5. R. Pavlovsky, A. Haefner, T.H. Joshi, V. Negut, K. McManus, E. Suzuki, R. Barnowski, K. Vetter, 3-D Radiation Mapping in Real-Time with the Localization and Mapping Platform LAMP from Unmanned Aerial Systems and Man-Portable Configurations, 2018 arXiv, arXiv:1901.05038v1 [physics.appph.
  6. D.M. Fleetwood, Total ionizing dose effects in MOS and low-dose-rate-sensitive linear-bipolar devices, IEEE Trans. Nucl. Sci. 60 (2013) 1706-1730, https://doi.org/10.1109/TNS.2013.2259260.
  7. G. Brucker, W. Dennehy, A. Holmes-Siedle, High energy radiation damage in silicon transistors, IEEE Trans. Nucl. Sci. 12 (1965) 69-77.
  8. I. Fetahovic, M. Pejovic, M. Vujisic, Radiation damage in electronic memory devices, Int. J. Photoenergy 2013 (2013) 5.
  9. C. Lee, G. Cho, T. Unruh, S. Hur, I. Kwon, Integrated circuit design for radiationhardened charge-sensitive amplifier survived up to 2 mrad, MDPI Sensors 20 (2020) 2765. https://doi.org/10.3390/s20102765
  10. S. Kim, J. Lee, I. Kwon, D. Jeon, TID-tolerant inverter designs for radiationhardened digital systems, Nucl. Instrum. Methods Phys. Res. A. 954 (2020) 161473. https://doi.org/10.1016/j.nima.2018.10.151
  11. I. Kwon, S. Kim, D. Fick, M. Kim, Y. Chen, D. Sylvester, Razor-lite: a light-weight register for error detection by observing virtual supply rails, J. Solid-State Circ. 49 (2014) 2054-2066. https://doi.org/10.1109/JSSC.2014.2328658
  12. J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation, IEEE (2015) 3431-3440.
  13. G. Liu, F.A. Reda, K.J. Shih, T. Wang, A. Tao, B. Catanzaro, Image Inpainting for Irregular Holes Using Partial Convolutions, 2018 arXiv, arXiv:1804.07723v2 [cs.CV] 15.
  14. K. Nazeri, E. Ng, T. Joseph, F.Z. Qureshi, M. Ebrahimi, EdgeConnect: Generative Image Inpainting with Adversarial Edge Learning, 2019 arXiv, arXiv: 1901.00212v3 [cs.CV].
  15. I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets, NIPS (News Physiol. Sci.) 27 (2014).
  16. K. Choi, M. Vania, S. Kim, Semi-Supervised Learning for Low-Dose CT Image Restoration with Hierarchical Deep Generative Adversarial Network (HDGAN), IEEE, 2019.
  17. J. Lehtinen, J. Munkberg, J. Hasselgren, S. Laine, T. Karras, M. Aittala, T. Aila, Noise2Noise: Learning Image Restoration without Clean Data, 2018 arXiv, arXiv:1803.04189v3 [cs.CV].
  18. O. Ronneberger, P. Fischer, T. Brox, U-Net, Convolutional Networks for Biomedical Image Segmentation, 2015 arXiv, arXiv:1505.04597v1 [cs.CV] 18.
  19. M. Abadi, et al., TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, 2015. Software available from: tensorflow.org.
  20. M. Tan, Q.V. Le, EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks, 2019 arXiv, arXiv:1905.11946v3 [cs.LG] 23, November.
  21. K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, arXiv, arXiv:1409.1556v6 [cs.CV] 10 April (2015).
  22. K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, 2015 arXiv, arXiv:1512.03385v1 [cs.CV] 10 December.
  23. A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko et al., Mobilenets: Efficient Convolutional Neural Networks for Mobile Vision Applications, arXiv, arXiv: 1704.04861v1 [cs.CV] 17 April (2017).
  24. D.P. Kingma, Jimmy Lei Ba, Adam: A Method for Stochastic Optimization, 2017 arXiv, arXiv:1412.6980v9 [cs.LG] 30 January.
  25. MCNP Team, MCNP6.2.0 Release Testing, LA-UR-17-29011, 2017.
  26. D. Kim, C. Kim, I. Kwon, Experimental results on a detector capacitance compensation technique for multiplexing SiPM channels, Nucl. Inst. Methods Phys. Res. A, A 954 (2020) 161527.